42 research outputs found
Solving the subset-sum problem with a light-based device
We propose a special computational device which uses light rays for solving
the subset-sum problem. The device has a graph-like representation and the
light is traversing it by following the routes given by the connections between
nodes. The nodes are connected by arcs in a special way which lets us to
generate all possible subsets of the given set. To each arc we assign either a
number from the given set or a predefined constant. When the light is passing
through an arc it is delayed by the amount of time indicated by the number
placed in that arc. At the destination node we will check if there is a ray
whose total delay is equal to the target value of the subset sum problem (plus
some constants).Comment: 14 pages, 6 figures, Natural Computing, 200
Quantum resource estimates for computing elliptic curve discrete logarithms
We give precise quantum resource estimates for Shor's algorithm to compute
discrete logarithms on elliptic curves over prime fields. The estimates are
derived from a simulation of a Toffoli gate network for controlled elliptic
curve point addition, implemented within the framework of the quantum computing
software tool suite LIQ. We determine circuit implementations for
reversible modular arithmetic, including modular addition, multiplication and
inversion, as well as reversible elliptic curve point addition. We conclude
that elliptic curve discrete logarithms on an elliptic curve defined over an
-bit prime field can be computed on a quantum computer with at most qubits using a quantum circuit of at most Toffoli gates. We are able to classically simulate the
Toffoli networks corresponding to the controlled elliptic curve point addition
as the core piece of Shor's algorithm for the NIST standard curves P-192,
P-224, P-256, P-384 and P-521. Our approach allows gate-level comparisons to
recent resource estimates for Shor's factoring algorithm. The results also
support estimates given earlier by Proos and Zalka and indicate that, for
current parameters at comparable classical security levels, the number of
qubits required to tackle elliptic curves is less than for attacking RSA,
suggesting that indeed ECC is an easier target than RSA.Comment: 24 pages, 2 tables, 11 figures. v2: typos fixed and reference added.
ASIACRYPT 201
Dasatinib inhibits CXCR4 signaling in chronic lymphocytic leukaemia cells and impairs migration towards CXCL12
Chemokines and their ligands play a critical role in enabling chronic lymphocytic leukaemia (CLL) cells access to protective microenvironmental niches within tissues, ultimately resulting in chemoresistance and relapse: disruption of these signaling pathways has become a novel therapeutic approach in CLL. The tyrosine kinase inhibitor dasatinib inhibits migration of several cell lines from solid-organ tumours, but effects on CLL cells have not been reported. We studied the effect of clinically achievable concentrations of dasatinib on signaling induced by the chemokine CXCL12 through its' receptor CXCR4, which is highly expressed on CLL cells. Dasatinib pre-treatment inhibited Akt and ERK phosphorylation in CLL cells upon stimulation with CXCL12. Dasatinib also significantly diminished the rapid increase in actin polymerisation observed in CLL cells following CXCL12 stimulation. Moreover, the drug significantly inhibited chemotaxis in a transwell assay, and reduced the percentage of cells able to migrate beneath a CXCL12-expressing murine stromal cell line. Dasatinib also abrogated the anti-apoptotic effect of prolonged CXCL12 stimulation on cultured CLL cells. These data suggest that dasatinib, akin to other small molecule kinase inhibitors targeting the B-cell receptor signaling pathway, may redistribute CLL cells from protective tissue niches to the peripheral blood, and support the investigation of dasatinib in combination strategies
Towards fault-tolerant quantum computing with trapped ions
Today ion traps are among the most promising physical systems for
constructing a quantum device harnessing the computing power inherent in the
laws of quantum physics. The standard circuit model of quantum computing
requires a universal set of quantum logic gates for the implementation of
arbitrary quantum operations. As in classical models of computation, quantum
error correction techniques enable rectification of small imperfections in gate
operations, thus allowing for perfect computation in the presence of noise. For
fault-tolerant computation, it is commonly believed that error thresholds
ranging between 10^-4 and 10^-2 will be required depending on the noise model
and the computational overhead for realizing the quantum gates. Up to now, all
experimental implementations have fallen short of these requirements. Here, we
report on a Molmer-Sorensen type gate operation entangling ions with a fidelity
of 99.3(1)% which together with single-qubit operations forms a universal set
of quantum gates. The gate operation is performed on a pair of qubits encoded
in two trapped calcium ions using a single amplitude-modulated laser beam
interacting with both ions at the same time. A robust gate operation, mapping
separable states onto maximally entangled states is achieved by adiabatically
switching the laser-ion coupling on and off. We analyse the performance of a
single gate and concatenations of up to 21 gate operations. The gate mechanism
holds great promise not only for two-qubit but also for multi-qubit operations.Comment: submitted to Nature Physic
Defeating NewHope with a Single Trace
The key encapsulation method NewHope allows two parties to agree on a secret key. The scheme includes a private and a public key. While the public key is used to encipher a random shared secret, the private key enables to decipher the ciphertext. NewHope is a candidate in the NIST post-quantum project, whose aim is to standardize cryptographic systems that are secure against attacks originating from both quantum and classical computers. While NewHope relies on the theory of quantum-resistant lattice problems, practical implementations have shown vulnerabilities against side-channel attacks targeting the extraction of the private key. In this paper, we demonstrate a new attack on the shared secret. The target consists of the C reference implementation as submitted to the NIST contest, being executed on a Cortex-M4 processor. Based on power measurement, the complete shared secret can be extracted from data of one single trace only. Further, we analyze the impact of different compiler directives. When the code is compiled with optimization turned off, the shared secret can be read from an oscilloscope display directly with the naked eye. When optimizations are enabled, the attack requires some more sophisticated techniques, but the attack still works on single power traces
ROAD: Domestic Assistant and Rehabilitation Robot
This study introduces the concept design and analysis of a robotic system for the assistance and rehabilitation of disabled people. Based on the statistical data of the most common types of disabilities in Spain and other industrialized countries, the different tasks that the device must be able to perform have been determined. In this study, different robots for rehabilitation and assistance previously introduced have been reviewed. This survey is focused on those robots that assist with gait, balance and standing up. The structure of the ROAD robot presents various advantages over these robots, we discuss some of them. The performance of the proposed architecture is analyzed when it performs the sit to stand activity
Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study
<p>Abstract</p> <p>Background</p> <p>In the last two decades robot training in neuromotor rehabilitation was mainly focused on shoulder-elbow movements. Few devices were designed and clinically tested for training coordinated movements of the wrist, which are crucial for achieving even the basic level of motor competence that is necessary for carrying out ADLs (activities of daily life). Moreover, most systems of robot therapy use point-to-point reaching movements which tend to emphasize the pathological tendency of stroke patients to break down goal-directed movements into a number of jerky sub-movements. For this reason we designed a wrist robot with a range of motion comparable to that of normal subjects and implemented a self-adapting training protocol for tracking smoothly moving targets in order to facilitate the emergence of smoothness in the motor control patterns and maximize the recovery of the normal RoM (range of motion) of the different DoFs (degrees of Freedom).</p> <p>Methods</p> <p>The IIT-wrist robot is a 3 DoFs light exoskeleton device, with direct-drive of each DoF and a human-like range of motion for Flexion/Extension (FE), Abduction/Adduction (AA) and Pronation/Supination (PS). Subjects were asked to track a variable-frequency oscillating target using only one wrist DoF at time, in such a way to carry out a progressive splinting therapy. The RoM of each DoF was angularly scanned in a staircase-like fashion, from the "easier" to the "more difficult" angular position. An Adaptive Controller evaluated online performance parameters and modulated both the assistance and the difficulty of the task in order to facilitate smoother and more precise motor command patterns.</p> <p>Results</p> <p>Three stroke subjects volunteered to participate in a preliminary test session aimed at verify the acceptability of the device and the feasibility of the designed protocol. All of them were able to perform the required task. The wrist active RoM of motion was evaluated for each patient at the beginning and at the end of the test therapy session and the results suggest a positive trend.</p> <p>Conclusion</p> <p>The positive outcomes of the preliminary tests motivate the planning of a clinical trial and provide experimental evidence for defining appropriate inclusion/exclusion criteria.</p
A comparative ultrastructural and molecular biological study on Chlamydia psittaci infection in alpha-1 antitrypsin deficiency and non-alpha-1 antitrypsin deficiency emphysema versus lung tissue of patients with hamartochondroma
BACKGROUND: Chlamydiales are familiar causes of acute and chronic infections in humans and animals. Human pulmonary emphysema is a component of chronic obstructive pulmonary disease (COPD) and a condition in which chronic inflammation manifested as bronchiolitis and intra-alveolar accumulation of macrophages is common. It is generally presumed to be of infectious origin. Previous investigations based on serology and immunohistochemistry indicated Chlamydophila pneumoniae infection in cases of COPD. Furthermore, immunofluorescence with genus-specific antibodies and electron microscopy suggested involvement of chlamydial infection in most cases of pulmonary emphysema, but these findings could not be verified by PCR. Therefore, we examined the possibility of other chlamydial species being present in these patients. METHODS: Tissue samples from patients having undergone lung volume reduction surgery for advanced alpha-1 antitrypsin deficiency (AATD, n = 6) or non-alpha-1 antitrypsin deficiency emphysema (n = 34) or wedge resection for hamartochondroma (n = 14) were examined by transmission electron microscopy and PCR. RESULTS: In all cases of AATD and 79.4% of non-AATD, persistent chlamydial infection was detected by ultrastructural examination. Intra-alveolar accumulation of macrophages and acute as well as chronic bronchiolitis were seen in all positive cases. The presence of Chlamydia psittaci was demonstrated by PCR in lung tissue of 66.7% AATD vs. 29.0% non-AATD emphysema patients. Partial DNA sequencing of four positive samples confirmed the identity of the agent as Chlamydophila psittaci. In contrast, Chlamydophila pneumoniae was detected only in one AATD patient. Lung tissue of the control group of non-smokers with hamartochondroma was completely negative for chlamydial bodies by TEM or chlamydial DNA by PCR. CONCLUSIONS: These data indicate a role of Chlamydophila psittaci in pulmonary emphysema by linking this chronic inflammatory process to a chronic infectious condition. This raises interesting questions on pathogenesis and source of infection