16 research outputs found
Investigations on the Peach 4 Debrite, a Late Pleistocene Mass Movement on the Northwest British Continental Margin
The Peach 4 debrite is the most recent in a series of large scale Pleistocene MTDs within the Barra fan on the northwest British continental margin. Geophysical data indicate that Peach 4 was formed through a combination of blocky and muddy debris flows and affects an area of ~ 700 km2. BGS core sample 56 -10 36, located directly over the Peach 4 debrite, provides a minimum age of 14.68 ka cal BP for the last major failure. An upwards fining turbidite sequence in BGS core sample 56 -10 239 is associ-ated with increased As and S concentrations, indicators of diagenetic pyrite which forms under anoxic conditions. It is proposed that As and S concentrations may pro-vide a method of distinguishing between contourite and turbidite sedimentation, though further research is required
Shallow gas and gas hydrate occurrences on the northwest Greenland shelf margin
An extensive 3D seismic dataset was used to investigate the contemporary hydrocarbon distribution and historical fluid migration in Melville Bay offshore northwest Greenland, providing the first inventory of shallow gas and gas hydrate along this part of the Greenland margin. The shallow gas anomalies vary in seismic character and have been subdivided into four categories that represent (I) isolated shallow gas, (II) free gas trapped at the base of the gas hydrate stability zone (GHSZ), (III) gas charged glacial clinoforms and (IV) a giant mass transport deposit gas reservoir. Gas hydrate deposits have been identified across an area of 537 km² via the identification of a discontinuous bottom simulating reflector (BSR) that marks the base of the GHSZ. The BSR has been used to estimate a geothermal gradient of 49 °C/km across the GHSZ and a heat flow of 70–90 mW/m², providing the first publically available heat flow estimates offshore western Greenland. The contemporary hydrocarbon distribution and historical fluid migration is influenced by the underlying paleo-rift topography and multiple shelf edge glaciations since ~2.7 Ma. Continued uplift of the Melville Bay Ridge, as well as glacial-sediment redistribution and basinward margin tilting from isostatic compensation, have led to a concentration of gas within the Cenozoic stratigraphy above the ridge. Furthermore, repeated variations in subsurface conditions during glacial-interglacial cycles likely promoted fluid remigration, and possibly contributed to reservoir leakage and increased fluid migration through faults. The top of the gas hydrate occurrence at 650 m water depth is well below the hydrate-free gas phase boundary (~350 m) for the present bottom-water temperature of 1.5 °C, suggesting this hydrate province mainly adjusted to glacial-interglacial changes by expansion and dissociation at its base and is relatively inert to current levels of global warming. Glacial-related dissociation may have significantly contributed to the numerous free gas accumulations observed below the GHSZ at present day
Glacimarine slope sedimentation, contourite drifts and bottom current pathways on the Barra Fan, UK North Atlantic margin
The sedimentary record of a 30-m core (MD95-2006) from the Barra Fan in the eastern Rockall Trough has been correlated with high-resolution seismic profiles obtained across sediment drifts and large mass flow deposits. A series of sediment drifts, featuring upslope migrating wavy bedforms, has been identified with deposition focussed along topographic steps created by glacigenic debrite lobes. The most extensive drift accumulation, termed the Barra Fan Drift, is observed on the distal fringe of the fan where an 80-m-thick sequence of aggrading to migrating sediment waves onlap a mega-debrite scarp. Prior to 26 ka (C-14 yr) and during the late glacial to Holocene transition silty-muddy contourites were deposited by the northward-flowing Deep Northern Boundary Current. Between 26 and 18 ka and around 14 ka contourite deposition was replaced by distal glacimarine sedimentation featuring thin-bedded sandy turbidites that were triggered during shelf-edge advances of the British Ice Sheet. During the last glacial period sediments accumulated at rates of more than 40 cm/ka, as a consequence of the high flux of sediments from the shelf margin and winnowing of exposed mass flow deposits by along-slope currents. In contrast the Holocene is represented by a condensed interval of silty-sandy mud due to vigorous bottom circulation and a low terrigenous sediment supply. Seismic seafloor signatures suggest that the present morphology of the Barra Fan is shaped by two pathways of bottom currents, probably both related to the Deep Northern Boundary Current. One branch of this water mass follows the lower slope, causing pronounced erosion on the distal part of the Barra Fan Drift, while the other is directed across the debrite topography of the fan bulge. (C) 2002 Elsevier Science B.V. All rights reserved.</p
Holocene climate variability at multidecadal time scales detected by sedimentological indicators in a shelf core NW off Iceland
A Holocene sediment record is presented from the Djupall trough, situated on the inner shelf northwest of Iceland. The paleoclimatic development has been interpreted on the basis of mass accumulation rate, carbonate content, mean grain size, sediment petrology and 29 radiocarbon dates. The results demonstrate in the early Holocene (10,000-8000 cal year BP) high sediment accumulation rates attributable to the effect of enhanced sediment mobilisation under influence of a relatively low sea level and remobilisation of glacial sediments on the sparsely vegetated Vestfirdir peninsula. The data suggest that a general southward displacement of the Polar Front commenced around 5000-4000 cal year BP. A new proxy for Holocene climatic variability is presented by the basalt/plagioclase ratio in the 63-100 mum fraction. High basalt/plagioclase values are primarily related to periods of increased storminess and bottom current energy, which enhanced the transport of basaltic sediment from the coastal zone towards the outer shelf. Advection of polar waters containing basalt-rich IRD from the eastern Greenland Blosseville Kyst basalt province may also have contributed to increased basalt/plagioclase ratios. The correlation between basalt/plagioclase ratios and proxies of solar activity (C-14 production and Be-10 flux) was explored and suggests that some of the centennial-scale peaks in colder climate could be related to increased nuclide production in the upper atmosphere. In addition, it was found that the Medieval Warm Period (c. 1100-700 cal year BP) was characterised by strong cyclone activity over the Iceland region. Intense atmospheric circulation during this period has been confirmed also by other studies in the northern North Atlantic region
The Faroe-Shetland Gateway: Late Quaternary water mass exchange between the Nordic seas and the northeastern Atlantic.
Thirteen piston and gravity cores from the Faroe-Shetland area were investigated for their planktic and benthic foraminiferal and oxygen isotopic distributions. Eight time-slices between 18 ka BP and the present were reconstructed to study variations in surface and deep water exchange between the SE Norwegian Sea and the northeast Atlantic Ocean. Today, a relatively strong northward flow of warm North Atlantic surface water is counterbalanced by a southward outflow of newly convected cold bottom water, the Norwegian Sea Overflow Water. During the last glacial maximum at 18 ka BP both the surface and bottom flows were slow and the climate conditions were Arctic. The convection north of the Faroe area was weak and unstable. The first indication of the deglaciation is a decrease in the planktic oxygen isotope values discernible southwest of the Faroe Islands at 15.5 ka BP. The deglaciation proceeded northeast and eastward synchronous with a gradual intensification of northward flowing warmer Atlantic Intermediate Water along the sea bottom. Meltwater fluxes increased between 14 and 13 ka BP producing cold surface waters, and the climatic cooling was extreme. There was no southward overflow of cold bottom water during this time period and the exchange of water masses between the Nordic seas and the North Atlantic Ocean was essentially reversed, i.e. estuarine. During the Bolling Interstadial at 12.5 ka BP northward flowing warm surface water was present to the east of the Faroe-Shetland Channel, wedged below a tongue of polar water spreading from the northwest and reaching into the Faroe-Shetland Channel. Convection in the Nordic seas and overflow of cold deep water started during the Bolling Interstadial. The polar water spread more eastward and southward during the following cold spell, the Younger Dryas, around 10.3 ka BP. The polar water was overlying the warmer, but more saline Atlantic water, which flowed northward below the cold surface water. The overflow of cold bottom water was supposedly only slightly weaker than during the Bolling Interstadial. Strong inflow of warm surface water took place during the Early Holocene at 9.5 ka BP and relatively dense cold water flowed southward along the bottom. The rate of water mass exchange reached a maximum at 6.5 ka BP, when both the inflow of warm Atlantic surface water and the outflow of cold dense bottom water appear to have been stronger than today
