57 research outputs found

    NONLINEAR ROSSBY ADJUSTMENT IN A CHANNEL - BEYOND KELVIN WAVES

    Get PDF
    Nonlinear advective adjustment of a discontinuity in free-surface height under gravity and rotation is considered, using the method of contour dynamics. After linear wave-adjustment has set up an interior jet and boundary currents in a wide ([dbl greater-than sign] one Rossby radius) channel, fluid surges down-channel on both walls, rather than only that wall supporting a down-channel Kelvin wave. A wedgelike intrusion of low potential vorticity fluid on this wall, and a noselike intrusion of such fluid on the opposite wall, serve to reverse the sign of relative vorticity in the pre-existing currents. For narrower channels, a coherent boundary-trapped structure of low potential vorticity fluid is ejected at one wall, and shoots ahead of its parent fluid. The initial tendency for the current to concentrate on the ‘right-hand’ wall (the one supporting a down-channel Kelvin wave in the northern hemisphere) is defeated as vorticity advection shifts the maximum to the left-hand side. Ultimately fluid washes downstream everywhere across even wide channels, leaving the linearly adjusted upstream condition as the final state. The time necessary for this to occur grows exponentially with channel width. The width of small-amplitude boundary currents in linear theory is equal to Rossby's deformation radius, yet here we find that the width of the variation in velocity and potential vorticity fields deviates from this scale across a large region of space and time. Comparisons of the contour dynamics solutions, valid for small amplitude, and integration of the shallow-water equations at large amplitude, show great similarity. Boundary friction strongly modifies these results, producing fields more closely resembling the linear wave-adjusted state. Observed features include those suggestive of coastally trapped gravity currents. Analytical results for the evolution of vorticity fronts near boundaries are given in support of the numerical experiments

    Interior pathways of the North Atlantic meridional overturning circulation

    Get PDF
    To understand how our global climate will change in response to natural and anthropogenic forcing, it is essential to determine how quickly and by what pathways climate change signals are transported throughout the global ocean, a vast reservoir for heat and carbon dioxide. Labrador Sea Water (LSW), formed by open ocean convection in the subpolar North Atlantic, is a particularly sensitive indicator of climate change on interannual to decadal timescales. Hydrographic observations made anywhere along the western boundary of the North Atlantic reveal a core of LSW at intermediate depths advected southward within the Deep Western Boundary Current (DWBC). These observations have led to the widely held view that the DWBC is the dominant pathway for the export of LSW from its formation site in the northern North Atlantic towards the Equator. Here we show that most of the recently ventilated LSW entering the subtropics follows interior, not DWBC, pathways. The interior pathways are revealed by trajectories of subsurface RAFOS floats released during the period 2003-2005 that recorded once-daily temperature, pressure and acoustically determined position for two years, and by model-simulated 'e-floats' released in the subpolar DWBC. The evidence points to a few specific locations around the Grand Banks where LSW is most often injected into the interior. These results have implications for deep ocean ventilation and suggest that the interior subtropical gyre should not be ignored when considering the Atlantic meridional overturning circulation.Dissertatio

    Waves on the Beta-Plane over Topography

    No full text

    The Impact of Small-Scale Topography on Large-Scale Ocean Dynamics

    No full text
    • 

    corecore