76 research outputs found

    Eating disorder features in indigenous Aboriginal and Torres Strait Islander Australian Peoples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity and related cardiovascular and metabolic conditions are well recognized problems for Australian Aboriginal and Torres Strait Islander peoples. However, there is a dearth of research on relevant eating disorders (EDs) such as binge eating disorder in these groups.</p> <p>Methods</p> <p>Data were obtained from interviews of 3047 (in 2005) and 3034 (in 2008) adults who were participants in a randomly selected South Australian household survey of individuals' age > 15 years. The interviewed comprised a general health survey in which ED questions were embedded. Data were weighted according to national census results and comprised key features of ED symptoms.</p> <p>Results</p> <p>In 2005 there were 94 (85 weighted) First Australian respondents, and in 2008 65 (70 weighted). Controlling for secular differences, in 2005 rates of objective binge eating and levels of weight and shape influence on self-evaluation were significantly higher in indigenous compared to non-indigenous participants, but no significant differences were found in ED features in 2008.</p> <p>Conclusions</p> <p>Whilst results on small numbers must be interpreted with caution, the main finding was consistent over the two samples. For First Australians ED symptoms are at least as frequent as for non-indigenous Australians.</p

    Genetic Identification of a Network of Factors that Functionally Interact with the Nucleosome Remodeling ATPase ISWI

    Get PDF
    Nucleosome remodeling and covalent modifications of histones play fundamental roles in chromatin structure and function. However, much remains to be learned about how the action of ATP-dependent chromatin remodeling factors and histone-modifying enzymes is coordinated to modulate chromatin organization and transcription. The evolutionarily conserved ATP-dependent chromatin-remodeling factor ISWI plays essential roles in chromosome organization, DNA replication, and transcription regulation. To gain insight into regulation and mechanism of action of ISWI, we conducted an unbiased genetic screen to identify factors with which it interacts in vivo. We found that ISWI interacts with a network of factors that escaped detection in previous biochemical analyses, including the Sin3A gene. The Sin3A protein and the histone deacetylase Rpd3 are part of a conserved histone deacetylase complex involved in transcriptional repression. ISWI and the Sin3A/Rpd3 complex co-localize at specific chromosome domains. Loss of ISWI activity causes a reduction in the binding of the Sin3A/Rpd3 complex to chromatin. Biochemical analysis showed that the ISWI physically interacts with the histone deacetylase activity of the Sin3A/Rpd3 complex. Consistent with these findings, the acetylation of histone H4 is altered when ISWI activity is perturbed in vivo. These findings suggest that ISWI associates with the Sin3A/Rpd3 complex to support its function in vivo

    Discovering Cooperative Relationships of Chromatin Modifications in Human T Cells Based on a Proposed Closeness Measure

    Get PDF
    BACKGROUND: Eukaryotic transcription is accompanied by combinatorial chromatin modifications that serve as functional epigenetic markers. Composition of chromatin modifications specifies histone codes that regulate the associated gene. Discovering novel chromatin regulatory relationships are of general interest. METHODOLOGY/PRINCIPAL FINDINGS: Based on the premise that the interaction of chromatin modifications is hypothesized to influence CpG methylation, we present a closeness measure to characterize the regulatory interactions of epigenomic features. The closeness measure is applied to genome-wide CpG methylation and histone modification datasets in human CD4+T cells to select a subset of potential features. To uncover epigenomic and genomic patterns, CpG loci are clustered into nine modules associated with distinct chromatin and genomic signatures based on terms of biological function. We then performed Bayesian network inference to uncover inherent regulatory relationships from the feature selected closeness measure profile and all nine module-specific profiles respectively. The global and module-specific network exhibits topological proximity and modularity. We found that the regulatory patterns of chromatin modifications differ significantly across modules and that distinct patterns are related to specific transcriptional levels and biological function. DNA methylation and genomic features are found to have little regulatory function. The regulatory relationships were partly validated by literature reviews. We also used partial correlation analysis in other cells to verify novel regulatory relationships. CONCLUSIONS/SIGNIFICANCE: The interactions among chromatin modifications and genomic elements characterized by a closeness measure help elucidate cooperative patterns of chromatin modification in transcriptional regulation and help decipher complex histone codes

    Flow Stress, Flow Curve

    No full text

    Flow Stress, Flow Curve

    No full text
    • …
    corecore