21 research outputs found

    Probing Specific Interaction Forces Between Human IgG and Rat Anti-Human IgG by Self-Assembled Monolayer and Atomic Force Microscopy

    Get PDF
    Interaction forces between biological molecules such as antigen and antibody play important roles in many biological processes, but probing these forces remains technically challenging. Here, we investigated the specific interaction and unbinding forces between human IgG and rat anti-human IgG using self assembled monolayer (SAM) method for sample preparation and atomic force microscopy (AFM) for interaction force measurement. The specific interaction force between human IgG and rat anti-human IgG was found to be 0.6–1.0 nN, and the force required for unbinding a single pair of human IgG and rat anti-human IgG was calculated to be 144 ± 11 pN. The results are consistent with those reported in the literatures. Therefore, SAM for sample preparation combined with AFM for interaction measurement is a relatively simple, sensitive and reliable technique to probe specific interactions between biological molecules such as antigen and antibody

    pO polarography, contrast enhanced color duplex sonography (CDS), [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography: validated methods for the evaluation of therapy-relevant tumor oxygenation or only bricks in the puzzle of tumor hypoxia?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study was conducted to analyze the value of ([<sup>18</sup>F] fluoromisonidazole (FMISO) and [<sup>18</sup>F]-2-fluoro-2'-deoxyglucose (FDG) PET as well as color pixel density (CPD) and tumor perfusion (TP) assessed by color duplex sonography (CDS) for determination of therapeutic relevant hypoxia. As a standard for measuring tissue oxygenation in human tumors, the invasive, computerized polarographic needle electrode system (pO<sub>2 </sub>histography) was used for comparing the different non invasive measurements.</p> <p>Methods</p> <p>Until now a total of 38 Patients with malignancies of the head and neck were examined. Tumor tissue pO<sub>2 </sub>was measured using a pO<sub>2</sub>-histograph. The needle electrode was placed CT-controlled in the tumor without general or local anesthesia. To assess the biological and clinical relevance of oxygenation measurement, the relative frequency of pO<sub>2 </sub>readings, with values ≤ 2.5, ≤ 5.0 and ≤ 10.0 mmHg, as well as mean and median pO<sub>2 </sub>were stated. FMISO PET consisted of one static scan of the relevant region, performed 120 min after intravenous administration. FMISO tumor to muscle ratios (FMISO<sub>T/M</sub>) and tumor to blood ratios (FMISO<sub>T/B</sub>) were calculated. FDG PET of the lymph node metastases was performed 71 ± 17 min after intravenous administration. To visualize as many vessels as possible by CDS, a contrast enhancer (Levovist<sup>®</sup>, Schering Corp., Germany) was administered. Color pixel density (CPD) was defined as the ratio of colored to grey pixels in a region of interest. From CDS signals two parameters were extracted: color hue – defining velocity (v) and color area – defining perfused area (A). Signal intensity as a measure of tissue perfusion (TP) was quantified as follows: TP = v<sub>mean </sub>× A<sub>mean</sub>.</p> <p>Results</p> <p>In order to investigate the degree of linear association, we calculated the Pearson correlation coefficient. Slight (|r| > 0.4) to moderate (|r| > 0.6) correlation was found between the parameters of pO<sub>2 </sub>polarography (pO<sub>2 </sub>readings with values ≤ 2.5, ≤ 5.0 and ≤ 10.0 mmHg, as well as median pO<sub>2</sub>), CPD and FMISO<sub>T/M</sub>. Only a slight correlation between TP and the fraction of pO<sub>2 </sub>values ≤ 10.0 mmHg, median and mean pO<sub>2 </sub>could be detected. After exclusion of four outliers the absolute values of the Pearson correlation coefficients increased clearly. There was no relevant association between mean or maximum FDG uptake and the different polarographic- as well as the CDS parameters.</p> <p>Conclusion</p> <p>CDS and FMISO PET represent different approaches for estimation of therapy relevant tumor hypoxia. Each of these approaches is methodologically limited, making evaluation of clinical potential in prospective studies necessary.</p

    How the kinetochore couples microtubule force and centromere stretch to move chromosomes

    No full text
    The Ndc80 complex (Ndc80, Nuf2, Spc24, Spc25) is a highly conserved kinetochore protein essential for end-on anchorage to spindle microtubule plus-ends and for force generation coupled to plus-end polymerization and depolymerization. Spc24/Spc25 at one end of the Ndc80 complex binds the kinetochore. The N-terminal tail and CH domains of Ndc80 bind microtubules, and an internal domain binds microtubule-associated proteins (MAPs) such as the Dam1 complex. To determine how the microtubule and MAP binding domains of Ndc80 contribute to force production at the kinetochore in budding yeast, we have inserted a FRET tension sensor into the Ndc80 protein about halfway between its microtubule binding and internal loop domains. The data support a mechanical model of force generation at metaphase where the position of the kinetochore relative to the microtubule plus-end reflects the relative strengths of microtubule depolymerization, centromere stretch and microtubule binding interactions with Ndc80 and Dam1 complexes
    corecore