21,648 research outputs found

    Electron cloud observations at the ISIS Proton Synchrotron

    Full text link
    The build up of electron clouds inside a particle accelerator vacuum chamber can produce strong transverse and longitudinal beam instabilities which in turn can lead to high levels of beam loss often requiring the accelerator to be run below its design specification. To study the behaviour of electron clouds at the ISIS Proton Synchrotron, a Micro-Channel Plate (MCP) based electron cloud detector has been developed. The detector is based on the Retarding Field Analyser (RFA) design and consists of a retarding grid, which allows energy analysis of the electron signal, and a MCP assembly placed in front of the collector plate. The MCP assembly provides a current gain over the range 300 to 25K, thereby increasing the signal to noise ratio and dynamic range of the measurements. This paper presents the first electron cloud observations at the ISIS Proton Synchrotron. These results are compared against signals from a beam position monitor and a fast beam loss monitor installed at the same location.Comment: 4 pages, contribution to the Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects: ECLOUD'12; 5-9 Jun 2012, La Biodola, Isola d'Elba, Ital

    On the general position subset selection problem

    Full text link
    Let f(n,)f(n,\ell) be the maximum integer such that every set of nn points in the plane with at most \ell collinear contains a subset of f(n,)f(n,\ell) points with no three collinear. First we prove that if O(n)\ell \leq O(\sqrt{n}) then f(n,)Ω(nln)f(n,\ell)\geq \Omega(\sqrt{\frac{n}{\ln \ell}}). Second we prove that if O(n(1ϵ)/2)\ell \leq O(n^{(1-\epsilon)/2}) then f(n,)Ω(nlogn)f(n,\ell) \geq \Omega(\sqrt{n\log_\ell n}), which implies all previously known lower bounds on f(n,)f(n,\ell) and improves them when \ell is not fixed. A more general problem is to consider subsets with at most kk collinear points in a point set with at most \ell collinear. We also prove analogous results in this setting

    Linear optics implementation of weak values in Hardy's paradox

    Full text link
    We propose an experimental setup for the implementation of weak measurements in the context of the gedankenexperiment known as Hardy's Paradox. As Aharonov et al. showed, these weak values form a language with which the paradox can be resolved. Our analysis shows that this language is indeed consistent and experimentally testable. It also reveals exactly how a combination of weak values can give rise to an apparently paradoxical result.Comment: 4 pages, accepted by PR
    corecore