1,520 research outputs found

    H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis

    Get PDF
    We investigate the evolution of super-AGB (SAGB) thermal pulse (TP) stars for a range of metallicities (Z) and explore the effect of convective boundary mixing (CBM). With decreasing metallicity and evolution along the TP phase, the He-shell flash and the third dredge-up (TDU) occur closer together in time. After some time (depending upon the CBM parametrization), efficient TDU begins while the pulse-driven convection zone (PDCZ) is still present, causing a convective exchange of material between the PDCZ and the convective envelope. This results in the ingestion of protons into the convective He-burning pulse. Even small amounts of CBM encourage the interaction of the convection zones leading to transport of protons from the convective envelope into the He layer. H-burning luminosities exceed 10⁹ (in some cases 10¹⁰) L⊙. We also calculate models of dredge-out in the most massive SAGB stars and show that the dredge-out phenomenon is another likely site of convective-reactive H-¹²C combustion. We discuss the substantial uncertainties of stellar evolution models under these conditions. Nevertheless, the simulations suggest that in the convective-reactive H-combustion regime of H ingestion the star may encounter conditions for the intermediate neutron capture process (i-process). We speculate that some CEMP-s/r stars could originate in i-process conditions in the H ingestion phases of low-Z SAGB stars. This scenario would however suggest a very low electron-capture supernova rate from SAGB stars. We also simulate potential outbursts triggered by such H ingestion events, present their light curves and briefly discuss their transient properties

    Electronic structure and total energy of interstitial hydrogen in iron: Tight binding models

    Get PDF
    An application of the tight binding approximation is presented for the description of electronic structure and interatomic force in magnetic iron, both pure and containing hydrogen impurities. We assess the simple canonical d-band description in comparison to a non orthogonal model including s and d bands. The transferability of our models is tested against known properties including the segregation energies of hydrogen to vacancies and to surfaces of iron. In many cases agreement is remarkably good, opening up the way to quantum mechanical atomistic simulation of the effects of hydrogen on mechanical properties

    Charge redistribution at Pd surfaces: ab initio grounds for tight-binding interatomic potentials

    Full text link
    A simplified tight-binding description of the electronic structure is often necessary for complex studies of surfaces of transition metal compounds. This requires a self-consistent parametrization of the charge redistribution, which is not obvious for late transition series elements (such as Pd, Cu, Au), for which not only d but also s-p electrons have to be taken into account. We show here, with the help of an ab initio FP-LMTO approach, that for these elements the electronic charge is unchanged from bulk to the surface, not only per site but also per orbital. This implies different level shifts for each orbital in order to achieve this orbital neutrality rule. Our results invalidate any neutrality rule which would allow charge redistribution between orbitals to ensure a common rigid shift for all of them. Moreover, in the case of Pd, the power law which governs the variation of band energy with respect to coordination number, is found to differ significantly from the usual tight-binding square root.Comment: 6 pages, 2 figures, Latex; Phys.Rev. B 56 (1997

    Worm Epidemics in Wireless Adhoc Networks

    Full text link
    A dramatic increase in the number of computing devices with wireless communication capability has resulted in the emergence of a new class of computer worms which specifically target such devices. The most striking feature of these worms is that they do not require Internet connectivity for their propagation but can spread directly from device to device using a short-range radio communication technology, such as WiFi or Bluetooth. In this paper, we develop a new model for epidemic spreading of these worms and investigate their spreading in wireless ad hoc networks via extensive Monte Carlo simulations. Our studies show that the threshold behaviour and dynamics of worm epidemics in these networks are greatly affected by a combination of spatial and temporal correlations which characterize these networks, and are significantly different from the previously studied epidemics in the Internet

    The stabilizing role of itinerant ferromagnetism in inter-granular cohesion in iron

    Full text link
    We present a simple, general energy functional for ferromagnetic materials based upon a local spin density extension to the Stoner theory of itinerant ferromagnetism. The functional reproduces well available ab initio results and experimental interfacial energies for grain boundaries in iron. The model shows that inter-granular cohesion along symmetric tilt boundaries in iron is dependent upon strong magnetic structure at the interface, illuminates the mechanisms underlying this structure, and provides a simple explanation for relaxation of the atomic structure at these boundaries.Comment: In review at Phys. Rev. Lett. Submitted 23 September 1997; revised 16 March 199

    Structural and chemical embrittlement of grain boundaries by impurities: a general theory and first principles calculations for copper

    Full text link
    First principles calculations of the Sigma 5 (310)[001] symmetric tilt grain boundary in Cu with Bi, Na, and Ag substitutional impurities provide evidence that in the phenomenon of Bi embrittlement of Cu grain boundaries electronic effects do not play a major role; on the contrary, the embrittlement is mostly a structural or "size" effect. Na is predicted to be nearly as good an embrittler as Bi, whereas Ag does not embrittle the boundary in agreement with experiment. While we reject the prevailing view that "electronic" effects (i.e., charge transfer) are responsible for embrittlement, we do not exclude the role of chemistry. However numerical results show a striking equivalence between the alkali metal Na and the semi metal Bi, small differences being accounted for by their contrasting "size" and "softness" (defined here). In order to separate structural and chemical effects unambiguously if not uniquely, we model the embrittlement process by taking the system of grain boundary and free surfaces through a sequence of precisely defined gedanken processes; each of these representing a putative mechanism. We thereby identify three mechanisms of embrittlement by substitutional impurities, two of which survive in the case of embrittlement or cohesion enhancement by interstitials. Two of the three are purely structural and the third contains both structural and chemical elements that by their very nature cannot be further unravelled. We are able to take the systems we study through each of these stages by explicit computer simulations and assess the contribution of each to the nett reduction in intergranular cohesion. The conclusion we reach is that embrittlement by both Bi and Na is almost exclusively structural in origin; that is, the embrittlement is a size effect.Comment: 13 pages, 5 figures; Accepted in Phys. Rev.

    Magnetic tight-binding and the iron-chromium enthalpy anomaly

    Full text link
    We describe a self consistent magnetic tight-binding theory based in an expansion of the Hohenberg-Kohn density functional to second order, about a non spin polarised reference density. We show how a first order expansion about a density having a trial input magnetic moment leads to the Stoner--Slater rigid band model. We employ a simple set of tight-binding parameters that accurately describes electronic structure and energetics, and show these to be transferable between first row transition metals and their alloys. We make a number of calculations of the electronic structure of dilute Cr impurities in Fe which we compare with results using the local spin density approximation. The rigid band model provides a powerful means for interpreting complex magnetic configurations in alloys; using this approach we are able to advance a simple and readily understood explanation for the observed anomaly in the enthalpy of mixing.Comment: Submitted to Phys Rev

    Generalized stacking fault energetics and dislocation properties: compact vs. spread unit dislocation structures in TiAl and CuAu

    Full text link
    We present a general scheme for analyzing the structure and mobility of dislocations based on solutions of the Peierls-Nabarro model with a two component displacement field and restoring forces determined from the ab-initio generalized stacking fault energetics (ie., the so-called γ\gamma-surface). The approach is used to investigate dislocations in L10_{0} TiAl and CuAu; predicted differences in the unit dislocation properties are explicitly related with features of the γ\gamma-surface geometry. A unified description of compact, spread and split dislocation cores is provided with an important characteristic "dissociation path" revealed by this highly tractable scheme.Comment: 7 two columns pages, 2 eps figures. Phys. Rev. B. accepted November 199

    Star Formation Histories of the LEGUS Dwarf Galaxies (I): recent History of NGC1705, NGC4449 and Holmberg II

    Get PDF
    We use HST observations from the Legacy Extragalactic UV Survey to reconstruct the recent star formation histories (SFHs) of three actively star-forming dwarf galaxies, NGC4449, Holmberg II and NGC1705, from their UV color-magnitude diagrams (CMDs). We apply a CMD fitting technique using two independent sets of stellar isochrones, PARSEC-COLIBRI and MIST, to assess the uncertainties related to stellar evolution modelling. Irrespective of the adopted stellar models, all the three dwarfs are found to have had almost constant star formation rates (SFRs) in the last 100-200 Myr, with modest enhancements (a factor of \sim2) above the 100 Myr-averaged-SFR. Significant differences among the three dwarfs are found in the overall SFR, the timing of the most recent peak and the SFR//area. The Initial Mass Function (IMF) of NGC1705 and Holmberg II is consistent with a Salpeter slope down to \approx 5 M_{\odot}, whereas it is slightly flatter, s=2.0=-2.0, in NGC4449. The SFHs derived with the two different sets of stellar models are consistent with each other, except for some quantitative details, attributable to their input assumptions. They also share the drawback that all synthetic diagrams predict a clear separation in color between upper main sequence and helium burning stars, which is not apparent in the data. Since differential reddening, significant in NGC4449, or unresolved binaries don't appear to be sufficient to fill the gap, we suggest this calls for a revision of both sets of stellar evolutionary tracks.Comment: 22 pages, 17 figures, accepted for publication on Ap

    Uncertainties in models of stellar structure and evolution

    Get PDF
    Numerous physical aspects of stellar physics have been presented in Ses- sion 2 and the underlying uncertainties have been tentatively assessed. We try here to highlight some specific points raised after the talks and during the general discus- sion at the end of the session and eventually at the end of the workshop. A table of model uncertainties is then drawn with the help of the participants in order to give the state of the art in stellar modeling uncertainties as of July 2013.Comment: Proc. of the workshop "Asteroseismology of stellar populations in the Milky Way" (Sesto, 22-26 July 2013), Astrophysics and Space Science Proceedings, (eds. A. Miglio, L. Girardi, P. Eggenberger, J. Montalban
    corecore