126 research outputs found

    A genetic basis for a postmeiotic X versus Y chromosome intragenomic conflict in the mouse.

    Get PDF
    Intragenomic conflicts arise when a genetic element favours its own transmission to the detriment of others. Conflicts over sex chromosome transmission are expected to have influenced genome structure, gene regulation, and speciation. In the mouse, the existence of an intragenomic conflict between X- and Y-linked multicopy genes has long been suggested but never demonstrated. The Y-encoded multicopy gene Sly has been shown to have a predominant role in the epigenetic repression of post meiotic sex chromatin (PMSC) and, as such, represses X and Y genes, among which are its X-linked homologs Slx and Slxl1. Here, we produced mice that are deficient for both Sly and Slx/Slxl1 and observed that Slx/Slxl1 has an opposite role to that of Sly, in that it stimulates XY gene expression in spermatids. Slx/Slxl1 deficiency rescues the sperm differentiation defects and near sterility caused by Sly deficiency and vice versa. Slx/Slxl1 deficiency also causes a sex ratio distortion towards the production of male offspring that is corrected by Sly deficiency. All in all, our data show that Slx/Slxl1 and Sly have antagonistic effects during sperm differentiation and are involved in a postmeiotic intragenomic conflict that causes segregation distortion and male sterility. This is undoubtedly what drove the massive gene amplification on the mouse X and Y chromosomes. It may also be at the basis of cases of F1 male hybrid sterility where the balance between Slx/Slxl1 and Sly copy number, and therefore expression, is disrupted. To the best of our knowledge, our work is the first demonstration of a competition occurring between X and Y related genes in mammals. It also provides a biological basis for the concept that intragenomic conflict is an important evolutionary force which impacts on gene expression, genome structure, and speciation

    The multicopy gene Sly represses the sex chromosomes in the male mouse germline after meiosis.

    Get PDF
    Studies of mice with Y chromosome long arm deficiencies suggest that the male-specific region (MSYq) encodes information required for sperm differentiation and postmeiotic sex chromatin repression (PSCR). Several genes have been identified on MSYq, but because they are present in more than 40 copies each, their functions cannot be investigated using traditional gene targeting. Here, we generate transgenic mice producing small interfering RNAs that specifically target the transcripts of the MSYq-encoded multicopy gene Sly (Sycp3-like Y-linked). Microarray analyses performed on these Sly-deficient males and on MSYq-deficient males show a remarkable up-regulation of sex chromosome genes in spermatids. SLY protein colocalizes with the X and Y chromatin in spermatids of normal males, and Sly deficiency leads to defective repressive marks on the sex chromatin, such as reduced levels of the heterochromatin protein CBX1 and of histone H3 methylated at lysine 9. Sly-deficient mice, just like MSYq-deficient mice, have severe impairment of sperm differentiation and are near sterile. We propose that their spermiogenesis phenotype is a consequence of the change in spermatid gene expression following Sly deficiency. To our knowledge, this is the first successful targeted disruption of the function of a multicopy gene (or of any Y gene). It shows that SLY has a predominant role in PSCR, either via direct interaction with the spermatid sex chromatin or via interaction with sex chromatin protein partners. Sly deficiency is the major underlying cause of the spectrum of anomalies identified 17 y ago in MSYq-deficient males. Our results also suggest that the expansion of sex-linked spermatid-expressed genes in mouse is a consequence of the enhancement of PSCR that accompanies Sly amplification

    Zfy genes are required for efficient meiotic sex chromosome inactivation (MSCI) in spermatocytes

    Get PDF
    During spermatogenesis, germ cells that fail to synapse their chromosomes or fail to undergo meiotic sex chromosome inactivation (MSCI) are eliminated via apoptosis during mid-pachytene. Previous work showed that Y-linked genes Zfy1 and Zfy2 act as "executioners" for this checkpoint, and that wrongful expression of either gene during pachytene triggers germ cell death. Here, we show that in mice, Zfy genes are also necessary for efficient MSCI and the sex chromosomes are not correctly silenced in Zfy-deficient spermatocytes. This unexpectedly reveals a triple role for Zfy at the mid-pachytene checkpoint in which Zfy genes first promote MSCI, then monitor its progress (since if MSCI is achieved, Zfy genes will be silenced), and finally execute cells with MSCI failure. This potentially constitutes a negative feedback loop governing this critical checkpoint mechanism

    Transcriptional changes in response to X chromosome dosage in the mouse: implications for X inactivation and the molecular basis of Turner Syndrome.

    Get PDF
    BACKGROUND: X monosomic mice (39,XO) have a remarkably mild phenotype when compared to women with Turner syndrome (45,XO). The generally accepted hypothesis to explain this discrepancy is that the number of genes on the mouse X chromosome which escape X inactivation, and thus are expressed at higher levels in females, is very small. However this hypothesis has never been tested and only a small number of genes have been assayed for their X-inactivation status in the mouse. We performed a global expression analysis in four somatic tissues (brain, liver, kidney and muscle) of adult 40,XX and 39,XO mice using the Illumina Mouse WG-6 v1_1 Expression BeadChip and an extensive validation by quantitative real time PCR, in order to identify which genes are expressed from both X chromosomes. RESULTS: We identified several genes on the X chromosome which are overexpressed in XX females, including those previously reported as escaping X inactivation, as well as new candidates. However, the results obtained by microarray and qPCR were not fully concordant, illustrating the difficulty in ascertaining modest fold changes, such as those expected for genes escaping X inactivation. Remarkably, considerable variation was observed between tissues, suggesting that inactivation patterns may be tissue-dependent. Our analysis also exposed several autosomal genes involved in mitochondrial metabolism and in protein translation which are differentially expressed between XX and XO mice, revealing secondary transcriptional changes to the alteration in X chromosome dosage. CONCLUSIONS: Our results support the prediction that the mouse inactive X chromosome is largely silent, while providing a list of the genes potentially escaping X inactivation in rodents. Although the lower expression of X-linked genes in XO mice may not be relevant in the particular tissues/systems which are affected in human X chromosome monosomy, genes deregulated in XO mice are good candidates for further study in an involvement in Turner Syndrome phenotype.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation

    Get PDF
    Chromosome synapsis during zygotene is a prerequisite for the timely homologous recombinational repair of meiotic DNA double-strand breaks (DSBs). Unrepaired DSBs are thought to trigger apoptosis during midpachytene of male meiosis if synapsis fails. An early pachytene response to asynapsis is meiotic silencing of unsynapsed chromatin (MSUC), which, in normal males, silences the X and Y chromosomes (meiotic sex chromosome inactivation [MSCI]). In this study, we show that MSUC occurs in Spo11-null mouse spermatocytes with extensive asynapsis but lacking meiotic DSBs. In contrast, three mutants (Dnmt3l, Msh5, and Dmc1) with high levels of asynapsis and numerous persistent unrepaired DSBs have a severely impaired MSUC response. We suggest that MSUC-related proteins, including the MSUC initiator BRCA1, are sequestered at unrepaired DSBs. All four mutants fail to silence the X and Y chromosomes (MSCI failure), which is sufficient to explain the midpachytene apoptosis. Apoptosis does not occur in mice with a single additional asynapsed chromosome with unrepaired meiotic DSBs and no disturbance of MSCI

    A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits

    Get PDF
    We tested the hypothesis that genes encoded on the sex chromosomes play a direct role in sexual differentiation of brain and behavior. We used mice in which the testis-determining gene (Sry) was moved from the Y chromosome to an autosome (by deletion of Sry from the Y and subsequent insertion of an Sry transgene onto an autosome), so that the determination of testis development occurred independently of the complement of X or Y chromosomes. We compared XX and XY mice with ovaries (females) and XX and XY mice with testes (males). These comparisons allowed us to assess the effect of sex chromosome complement (XX vs XY) independent of gonadal status (testes vs ovaries) on sexually dimorphic neural and behavioral phenotypes. The phenotypes included measures of male copulatory behavior, social exploration behavior, and sexually dimorphic neuroanatomical structures in the septum, hypothalamus, and lumbar spinal cord. Most of the sexually dimorphic phenotypes correlated with the presence of ovaries or testes and therefore reflect the hormonal output of the gonads. We found, however, that both male and female mice with XY sex chromosomes were more masculine than XX mice in the density of vasopressin-immunoreactive fibers in the lateral septum. Moreover, two male groups differing only in the form of their Sry gene showed differences in behavior. The results show that sex chromosome genes contribute directly to the development of a sex difference in the brain

    Human and mouse ZFY genes produce a conserved testis-specific transcript encoding a zinc finger protein with a short acidic domain and modified transactivation potential

    Get PDF
    Mammalian ZFY genes are located on the Y chromosome, and code putative transcription factors with 12–13 zinc fingers preceded by a large acidic (activating) domain. In mice, there are two genes, Zfy1 and Zfy2, which are expressed mainly in the testis. Their transcription increases in germ cells as they enter meiosis, both are silenced by meiotic sex chromosome inactivation (MSCI) during pachytene, and Zfy2 is strongly reactivated later in spermatids. Recently, we have shown that mouse Zfy2, but not Zfy1, is involved in triggering the apoptotic elimination of specific types of sex chromosomally aberrant spermatocytes. In humans, there is a single widely transcribed ZFY gene, and there is no evidence for a specific role in the testis. Here, we characterize ZFY transcription during spermatogenesis in mice and humans. In mice, we define a variety of Zfy transcripts, among which is a Zfy2 transcript that predominates in spermatids, and a Zfy1 transcript, lacking an exon encoding approximately half of the acidic domain, which predominates prior to MSCI. In humans, we have identified a major testis-specific ZFY transcript that encodes a protein with the same short acidic domain. This represents the first evidence that ZFY has a conserved function during human spermatogenesis. We further show that, in contrast to the full acidic domain, the short domain does not activate transcription in yeast, and we hypothesize that this explains the functional difference observed between Zfy1 and Zfy2 during mouse meiosis

    CCR7+ dendritic cells sorted by binding of CCL19 show enhanced Ag-presenting capacity and antitumor potency

    Get PDF
    Dendritic cell therapy has been a promising addition to the current armory of therapeutic options in cancer for more than 20 years but has not yet achieved breakthrough success. To successfully initiate immunity, dendritic cells have to enter the lymph nodes. However, experience to date of therapeutic dendritic cell administration indicates that this is frequently an extremely inefficient process. The major regulator of dendritic cell migration to the lymph nodes is the chemokine receptor CCR7 and in vitro generated dendritic cells typically display heterogeneous expression of this receptor. Here we demonstrate that positive selection for the dendritic cell subpopulation expressing CCR7, using a chemically-synthesized ligand:CCL19, enriches for cells with enhanced lymph node migration and Ag presentation competence as well as a chemokine expression profile indicative of improved interactions with T cells. This enhanced lymph node homing capacity of enriched CCR7+ cells is seen in comparison to a population of unsorted dendritic cells containing an equivalent number of CCR7+ dendritic cells. Importantly, this indicates that separating the CCR7+ dendritic cells from the CCR7− cells, rather than simple CCL19 exposure, is required to affect the enhanced lymph node migration of the CCR7+ cells. In models of both subcutaneous and metastatic melanoma, we demonstrate that the dendritic cells sorted for CCR7 expression trigger enhanced CD8 T-cell driven antitumor immune responses which correlate with reduced tumor burden and increased survival. Finally, we demonstrate that this approach is directly translatable to human dendritic cell therapy using the same reagents coupled with clinical-grade flow-cytometric sorting
    corecore