22 research outputs found

    Journal of Geophysics and Engineering

    No full text
    Texto completo. Acesso restrito. p. 1-9The pure P-wave equation for modelling and migration in tilted transversely isotropic (TTI) media has attracted more and more attention in imaging seismic data with anisotropy. The desirable feature is that it is absolutely free of shear-wave artefacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward–backward Fourier transforms in wavefield updating at each time step, the computational cost is significant, and thereby hampers its prevalence. We propose to use a hybrid pseudospectral (PS) and finite-difference (FD) scheme to solve the pure P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the benefit in cost saving of the new scheme, 2D and 3D reverse-time migration (RTM) examples using the hybrid solution to the pure P-wave equation are carried out, and respective runtimes are listed and compared. Numerical results show that the hybrid strategy demands less computation time and is faster than using the PS method alone. Furthermore, this new TTI RTM algorithm with the hybrid method is computationally less expensive than that with the FD solution to conventional TTI coupled equationsSalvado

    Journal of Geophysics and Engineering

    No full text
    Texto completo: acesso restrito. p. 291-301In isotropic media, we use the scalar acoustic wave equation to perform reverse time migration (RTM) of the recorded pressure wavefield data. In anisotropic media, P- and SV-waves are coupled, and the elastic wave equation should be used for RTM. For computational efficiency, a pseudo-acoustic wave equation is often used. This may be solved using a coupled system of second-order partial differential equations. We solve these using a pseudo spectral method and the rapid expansion method (REM) for the explicit time marching. This method generates a degenerate SV-wave in addition to the P-wave arrivals of interest. To avoid this problem, the elastic wave equation for vertical transversely isotropic (VTI) media can be split into separate wave equations for P- and SV-waves. These separate wave equations are stable, and they can be effectively used to model and migrate seismic data in VTI media where |epsilon − δ| is small. The artifact for the SV-wave has also been removed. The independent pseudo-differential wave equations can be solved one for each mode using the pseudo spectral method for the spatial derivatives and the REM for the explicit time advance of the wavefield. We show numerically stable and high-resolution modeling and RTM results for the pure P-wave mode in VTI media

    Genetic inversion of AVO

    No full text

    Revista Brasileira de Geofísica

    No full text
    Três métodos de migração 2-D pré-empilhamento em profundidade usando operadores de extrapolação "split-step" foram desenvolvidos e testados em dados sísmicos ordenados em famílias de tiro comum. No primeiro método, chamado de migração "split-step" simultâneo (SS-S), a migração é realizada simultaneamente para as fontes e receptores usando-se operadores de extrapolação do tipo "split-step". Os dados registrados nos receptores são depropagados em profundidade e a propagação da fonte é simulada utilizando-se operadores "split-step" em ambos os procedimentos. A imagem final, ou seção migrada em profundidade, é obtida somando-se todas as freqüências de interesse durante o processo de correlação dos campos propagados e depropagados, para cada nível de profundidade e somando-se todos os tiros migrados. Visando diminuir o tempo computacional do método de migração SS-S, implementamos um segundo método, cujo cálculo dos tempos da fonte é realizado através da solução por diferencias finitas da equação iconal. Este segundo método é referido como método híbrido (SS-H). O terceiro método de migração desenvolvido e implementado é o resultado da combinação dos métodos SS-S e "Phase-shift Plus Interpolation" (PSPI). Neste caso, os campos de ondas são depropagados para diferentes velocidades e interpolados, como no método PSPI convencional. Ele é aqui denominado de método PSPI-SS. Quanto à escolha do operador de extrapolação "split-step" se deve, principalmente, à sua facilidade de implementação computacional e por apresentar imagens migradas de boa precisão e, também, pela sua robustez, mesmo em situações de forte contraste lateral de velocidade. Os resultados apresentados neste trabalho foram obtidos usando-se dados sintéticos, gerados a partir dos modelos Marmousi e EAGE/SEG, modelos em profundidade que apresentam uma alta complexidade geológica. Os resultados foram comparados entre si e os três métodos apresentaram imagens migradas bastante satisfatórias.São Paul
    corecore