554 research outputs found

    Resistivity as a function of temperature for models with hot spots on the Fermi surface.

    Full text link
    We calculate the resistivity ρ\rho as a function of temperature TT for two models currently discussed in connection with high temperature superconductivity: nearly antiferromagnetic Fermi liquids and models with van Hove singularities on the Fermi surface. The resistivity is calculated semiclassicaly by making use of a Boltzmann equation which is formulated as a variational problem. For the model of nearly antiferromagnetic Fermi liquids we construct a better variational solution compared to the standard one and we find a new energy scale for the crossover to the ρT2\rho\propto T^2 behavior at low temperatures. This energy scale is finite even when the spin-fluctuations are assumed to be critical. The effect of additional impurity scattering is discussed. For the model with van Hove singularities a standard ansatz for the Boltzmann equation is sufficient to show that although the quasiparticle lifetime is anomalously short, the resistivity ρT2ln(1/T)\rho\propto T^2\ln(1/T).Comment: Revtex 3.0, 8 pages; figures available upon request. Submitted to Phys. Rev. B

    Correlations between charge radii differences of mirror nuclei and stellar observables

    Get PDF
    The correlation between the charge radii differences in mirror nuclei pairs and the neutron skin thickness has been studied with the so-called finite range simple effective interaction over a wide mass region. The so far precisely measured charge radii difference data within their experimental uncertainty ranges in the 34Ar-34S, 36Ca-36S, 38Ca-38Ar, and 54Ni-54Fe mirror pairs are used to ascertain an upper limit for the slope parameter of the nuclear symmetry energy L ≈ 100 MeV. This limiting value of L is found to be consistent with the upper bound of the NICER PSR J0740+6620 constraint at 1σ level for the radius R1.4 of 1.4M neutron stars. The lower bound of the NICER R1.4 data constrains the lower limit of L to ≈70 MeV. Within the range for L = 70–100 MeV the tidal deformability Lambda1.4 constraint, which is extracted from the GW170817 event at 2σ level, and the recent PREX-2 and CREX data on the neutron skin thickness are discussed
    corecore