43 research outputs found

    Hydrogen peroxide production regulates the mitochondrial function in insulin resistant muscle cells: Effect of catalase overexpression

    Get PDF
    AbstractThe mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500μM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with β-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and β-oxidation of fatty acids

    Decision making in fuzzy environment and multicriteria power engineering problems

    No full text
    This paper presents results of research into the use of the Bellman-Zadeh approach to decision making in a fuzzy environment for solving multicriteria power engineering problems. The application of the approach conforms to the principle of guaranteed result and provides constructive lines in computationally effective obtaining harmonious solutions on the basis of solving associated maxmin problems. The presented results are universally applicable and are already being used to solve diverse classes of power engineering problems. It is illustrated by considering problems of power and energy shortage allocation, power system operation, optimization of network configuration in distribution systems, and energetically effective voltage control in distribution systems. (c) 2011 Elsevier Ltd. All rights reserved.National Council for Scientific and Technological Development of Brazil (CNPq)Minas Gerais State Energy Company (CEMIG

    Topological line defects in graphene nanoislands

    No full text
    Resumen del trabajo presentado a la 13th European Conference on Surface Crystallography and Dynamics, celebrada en Donostia-San Sebastián (España) del 19 al 21 de junio de 2017.Understanding grain boundaries in polycrystalline graphene is crucial for the control of both their electronic and mechanical properties. Depending on their topological structure, boundaries can impede transport across grains, or host their own one dimensional metallic states. Concerning mechanical stability, they can either weaken or strengthen the graphene sheet. We here report experimental evidence on some predicted and other new topological defect boundary structures, as found by Scanning Tunnelling Microscopy (STM) in graphene nanoislands grown on Ni(111) by CVD. By using mild annealing temperatures, we obtain multi-domain nanoislands with different types of domain boundaries. High-resolution STM images allow us to characterize both the stacking and orientation of graphene domains and the boundary atomic structure. From a statistical analysis of the rotated domains, we conclude that their abundance is closely related to the boundary energetics, evidencing that the selection of rotational domains is determined by boundary rather than stacking energetics. linear and ring boundaries separating 30º rotated domains are particularly interesting: the linear ones are predicted to be transparent to Dirac electrons, whereas confined resonances have already been observed in quantum dots bound by similar ring boundaries.Peer reviewe
    corecore