97,769 research outputs found
Korean coastal water depth/sediment and land cover mapping (1:25,000) by computer analysis of LANDSAT imagery
Computer analysis was applied to single date LANDSAT MSS imagery of a sample coastal area near Seoul, Korea equivalent to a 1:50,000 topographic map. Supervised image processing yielded a test classification map from this sample image containing 12 classes: 5 water depth/sediment classes, 2 shoreline/tidal classes, and 5 coastal land cover classes at a scale of 1:25,000 and with a training set accuracy of 76%. Unsupervised image classification was applied to a subportion of the site analyzed and produced classification maps comparable in results in a spatial sense. The results of this test indicated that it is feasible to produce such quantitative maps for detailed study of dynamic coastal processes given a LANDSAT image data base at sufficiently frequent time intervals
Scaling in the crossover from random to correlated growth
In systems where deposition rates are high compared to diffusion, desorption
and other mechanisms that generate correlations, a crossover from random to
correlated growth of surface roughness is expected at a characteristic time
t_0. This crossover is analyzed in lattice models via scaling arguments, with
support from simulation results presented here and in other authors works. We
argue that the amplitudes of the saturation roughness and of the saturation
time scale as {t_0}^{1/2} and t_0, respectively. For models with lateral
aggregation, which typically are in the Kardar-Parisi-Zhang (KPZ) class, we
show that t_0 ~ 1/p, where p is the probability of the correlated aggregation
mechanism to take place. However, t_0 ~ 1/p^2 is obtained in solid-on-solid
models with single particle deposition attempts. This group includes models in
various universality classes, with numerical examples being provided in the
Edwards-Wilkinson (EW), KPZ and Villain-Lai-Das Sarma (nonlinear molecular-beam
epitaxy) classes. Most applications are for two-component models in which
random deposition, with probability 1-p, competes with a correlated aggregation
process with probability p. However, our approach can be extended to other
systems with the same crossover, such as the generalized restricted
solid-on-solid model with maximum height difference S, for large S. Moreover,
the scaling approach applies to all dimensions. In the particular case of
one-dimensional KPZ processes with this crossover, we show that t_0 ~ nu^{-1}
and nu ~ lambda^{2/3}, where nu and lambda are the coefficients of the linear
and nonlinear terms of the associated KPZ equations. The applicability of
previous results on models in the EW and KPZ classes is discussed.Comment: 14 pages + 5 figures, minor changes, version accepted in Phys. Rev.
Finite element solution of low bond number sloshing
The dynamics of liquid propellant in a low Bond number environment which are critical to the design of spacecraft systems with respect to orbital propellant transfer and attitude control system were investigated. Digital computer programs were developed for the determination of liquid free surface equilibrium shape, lateral slosh natural vibration mode shapes, and frequencies for a liquid in a container of arbitrary axisymmetric shape with surface tension forces the same order of magnitude as acceleration forces. A finite volume element representation of the liquid was used for the vibration analysis. The liquid free surface equilibrium shapes were computed for several tanks at various contact angles and ullage volumes. A configuration was selected for vibration analysis and lateral slosh mode shapes and natural frequencies were obtained. Results are documented
A hill-sliding strategy for initialization of Gaussian clusters in the multidimensional space
A hill sliding technique was devised to extract Gaussian clusters from the multivariate probability density estimate of sample data for the first step of iterative unsupervised classification. Each cluster was assumed to posses a unimodal normal distribution. A clustering function proposed distinguished elements of a cluster under formation from the rest in the feature space. Initial clusters were extracted one by one according to the hill sliding tactics. A dimensionless cluster compactness parameter was proposed as a universal measure of cluster goodness and used satisfactorily in test runs with LANDSAT multispectral scanner data. The normalized divergence, defined by the cluster divergence divided by the entropy of the entire sample data, was utilized as a general separability measure between clusters. An overall clustering objective function was set forth in terms of cluster covariance matrices, from which the cluster compactness measure could be deduced. Minimal improvement of initial data partitioning was evaluated by this objective function in eliminating scattered sparse data points. The hill sliding clustering technique developed herein has the potential applicability to decomposition any multivariate mixture distribution into a number of unimodal distributions when an appropriate distribution function to the data set is employed
- …