624 research outputs found

    The role of H2S bioavailability in endothelial dysfunction

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Endothelial dysfunction (EDF) reflects pathophysiological changes in the phenotype and functions of endothelial cells that result from and/or contribute to a plethora of cardiovascular diseases. We review the role of hydrogen sulfide (H2S) in the pathogenesis of EDF, one of the fastest advancing research topics. Conventionally treated as an environment pollutant, H2S is also produced in endothelial cells and participates in the fine regulation of endothelial integrity and functions. Disturbed H2S bioavailability has been suggested to be a novel indicator of EDF progress and prognosis. EDF manifests in different forms in multiple pathologies, but therapeutics aimed at remedying altered H2S bioavailability may benefit all.This work has been supported by a Discovery Grant from Natural Sciences and Engineering Research council of Canada to RW. CS has been supported by the American Diabetes Association, the National Institutes of Health of USA and the Shriners Hospitals for Children. FI has been supported by the National Institutes of Health of USA. MW has been supported by the Medical Research Council of UK. AA has been supported by programme grants from British Heart Foundation (RG/09/001/25940), Medical Research Council (G0700288), Royal Society and European Union. AP has been supported through an Aristeia grant (1436) that is co-financed by the European Union (ESF) and Greek national funds through the Operational Program ā€œEducation and Lifelong Learningā€. MW and AP are supported by the COST Action BM1005 (ENOG: European network on gasotransmitters)

    The protective role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H<sub>2</sub>S) pathway against experimental osteoarthritis.

    Get PDF
    Osteoarthritis (OA) is characterized by the formation and deposition of calcium-containing crystals in joint tissues, but the underlying mechanisms are poorly understood. The gasotransmitter hydrogen sulfide (H &lt;sub&gt;2&lt;/sub&gt; S) has been implicated in mineralization but has never been studied in OA. Here, we investigated the role of the H &lt;sub&gt;2&lt;/sub&gt; S-producing enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) in cartilage calcification and OA development. 3-MST expression was analyzed in cartilage from patients with different OA degrees, and in cartilage stimulated with hydroxyapatite (HA) crystals. The modulation of 3-MST expression in vivo was studied in the meniscectomy (MNX) model of murine OA, by comparing sham-operated to MNX knee cartilage. The role of 3-MST was investigated by quantifying joint calcification and cartilage degradation in WT and 3-MST &lt;sup&gt;-/-&lt;/sup&gt; meniscectomized knees. Chondrocyte mineralization in vitro was measured in WT and 3-MST &lt;sup&gt;-/-&lt;/sup&gt; cells. Finally, the effect of oxidative stress on 3-MST expression and chondrocyte mineralization was investigated. 3-MST expression in human cartilage negatively correlated with calcification and OA severity, and diminished upon HA stimulation. In accordance, cartilage from menisectomized OA knees revealed decreased 3-MST if compared to sham-operated healthy knees. Moreover, 3-MST &lt;sup&gt;-/-&lt;/sup&gt; mice showed exacerbated joint calcification and OA severity if compared to WT mice. In vitro, genetic or pharmacologic inhibition of 3-MST in chondrocytes resulted in enhanced mineralization and IL-6 secretion. Finally, oxidative stress decreased 3-MST expression and increased chondrocyte mineralization, maybe via induction of pro-mineralizing genes. 3-MST-generated H &lt;sub&gt;2&lt;/sub&gt; S protects against joint calcification and experimental OA. Enhancing H &lt;sub&gt;2&lt;/sub&gt; S production in chondrocytes may represent a potential disease modifier to treat OA

    Thioglycine and l-thiovaline: biologically active H2S-donors.

    Get PDF
    Thioglycine and l-thiovaline are stable under acidic and basic conditions but in the presence of bicarbonate they liberate the gasotransmitter H(2)S. In cells both thioamino acids were proven to enhance cGMP formation and promote vasorelaxation in mouse aortic rings. Given that H(2)S is known to lower arterial hypertension, reduce oxidative stress and exhibit cardioprotective effects in preclinical models, H(2)S donors hold promise as novel treatments for cardiovascular disease

    SRRM2, a Potential Blood Biomarker Revealing High Alternative Splicing in Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects about five million people worldwide. Diagnosis remains clinical, based on phenotypic patterns. The discovery of laboratory markers that will enhance diagnostic accuracy, allow pre-clinical detection and tracking of disease progression is critically needed. These biomarkers may include transcripts with different isoforms.We performed extensive analysis on 3 PD microarray experiments available through GEO and found that the RNA splicing gene SRRM2 (or SRm300), sereine/arginine repetitive matrix 2, was the only gene differentially upregulated among all the three PD experiments. SRRM2 expression was not changed in the blood of other neurological diseased patients versus the healthy controls. Using real-time PCR, we report that the shorter transcript of SRRM2 was 1.7 fold (p = 0.008) upregulated in the substantia nigra of PDs vs controls while the longer transcript was 0.4 downregulated in both the substantia nigra (p = 0.03) and amygdala (p = 0.003). To validate our results and test for the possibility of alternative splicing in PD, we performed independent microarray scans, using Affymetrix Exon_ST1 arrays, from peripheral blood of 28 individuals (17 PDs and 11 Ctrls) and found a significant upregulation of the upstream (5') exons of SRRM2 and a downregulation of the downstream exons, causing a total of 0.7 fold down regulation (p = 0.04) of the long isoform. In addition, we report novel information about hundreds of genes with significant alternative splicing (differential exonic expression) in PD blood versus controls.The consistent dysregulation of the RNA splicing factor SRRM2 in two different PD neuronal sources and in PD blood but not in blood of other neurologically diseased patients makes SRRM2 a strong candidate gene for PD and draws attention to the role of RNA splicing in the disease

    cGMP-dependent protein kinase contributes to hydrogen sulfide-stimulated vasorelaxation.

    Get PDF
    A growing body of evidence suggests that hydrogen sulfide (Hā‚‚S) is a signaling molecule in mammalian cells. In the cardiovascular system, Hā‚‚S enhances vasodilation and angiogenesis. Hā‚‚S-induced vasodilation is hypothesized to occur through ATP-sensitive potassium channels (K(ATP)); however, we recently demonstrated that it also increases cGMP levels in tissues. Herein, we studied the involvement of cGMP-dependent protein kinase-I in Hā‚‚S-induced vasorelaxation. The effect of Hā‚‚S on vessel tone was studied in phenylephrine-contracted aortic rings with or without endothelium. cGMP levels were determined in cultured cells or isolated vessel by enzyme immunoassay. Pretreatment of aortic rings with sildenafil attenuated NaHS-induced relaxation, confirming previous findings that Hā‚‚S is a phosphodiesterase inhibitor. In addition, vascular tissue levels of cGMP in cystathionine gamma lyase knockouts were lower than those in wild-type control mice. Treatment of aortic rings with NaHS, a fast releasing Hā‚‚S donor, enhanced phosphorylation of vasodilator-stimulated phosphoprotein in a time-dependent manner, suggesting that cGMP-dependent protein kinase (PKG) is activated after exposure to Hā‚‚S. Incubation of aortic rings with a PKG-I inhibitor (DT-2) attenuated NaHS-stimulated relaxation. Interestingly, vasodilatory responses to a slowly releasing Hā‚‚S donor (GYY 4137) were unaffected by DT-2, suggesting that this donor dilates mouse aorta through PKG-independent pathways. Dilatory responses to NaHS and L-cysteine (a substrate for Hā‚‚S production) were reduced in vessels of PKG-I knockout mice (PKG-Iā»/ā»). Moreover, glibenclamide inhibited NaHS-induced vasorelaxation in vessels from wild-type animals, but not PKG-Iā»/ā», suggesting that there is a cross-talk between K(ATP) and PKG. Our results confirm the role of cGMP in the vascular responses to NaHS and demonstrate that genetic deletion of PKG-I attenuates NaHS and L-cysteine-stimulated vasodilation

    Return of the Tbx5; lineage-tracing reveals ventricular cardiomyocyte-like precursors in the injured adult mammalian heart

    Get PDF
    The single curative measure for heart failure patients is a heart transplantation, which is limited due to a shortage of donors, the need for immunosuppression and economic costs. Therefore, there is an urgent unmet need for identifying cell populations capable of cardiac regeneration that we will be able to trace and monitor. Injury to the adult mammalian cardiac muscle, often leads to a heart attack through the irreversible loss of a large number of cardiomyocytes, due to an idle regenerative capability. Recent reports in zebrafish indicate that Tbx5a is a vital transcription factor for cardiomyocyte regeneration. Preclinical data underscore the cardioprotective role of Tbx5 upon heart failure. Data from our earlier murine developmental studies have identified a prominent unipotent Tbx5-expressing embryonic cardiac precursor cell population able to form cardiomyocytes, in vivo, in vitro and ex vivo. Using a developmental approach to an adult heart injury model and by employing a lineage-tracing mouse model as well as the use of single-cell RNA-seq technology, we identify a Tbx5-expressing ventricular cardiomyocyte-like precursor population, in the injured adult mammalian heart. The transcriptional profile of that precursor cell population is closer to that of neonatal than embryonic cardiomyocyte precursors. Tbx5, a cardinal cardiac development transcription factor, lies in the center of a ventricular adult precursor cell population, which seems to be affected by neurohormonal spatiotemporal cues. The identification of a Tbx5-specific cardiomyocyte precursor-like cell population, which is capable of dedifferentiating and potentially deploying a cardiomyocyte regenerative program, provides a clear target cell population for translationally-relevant heart interventional studies

    Inhibition of nitric oxide-stimulated vasorelaxation by carbon monoxide-releasing molecules.

    Get PDF
    Carbon monoxide (CO) is a weak soluble guanylyl cyclase stimulator, leading to transient increases in cGMP and vasodilation. The aim of the present work was to measure the effect of CO-releasing molecules (CORMs) on the cGMP/nitric oxide (NO) pathway and to evaluate how selected CORMs affect NO-induced vasorelaxation. METHODS AND RESULTS: Incubation of smooth muscle cells with some but not all of the CORMs caused a minor increase in cGMP levels. Concentration-response curves were bell-shaped, with higher CORMs concentrations producing lower increases in cGMP levels. Although exposure of cells to CORM-2 enhanced cGMP formation, we observed that the compound inhibited NO-stimulated cGMP accumulation in cells and NO-stimulated soluble guanylyl cyclase activity that could be reversed by superoxide anion scavengers. Reactive oxygen species generation from CORMs was confirmed using luminol-induced chemiluminescence and electron spin resonance. Furthermore, we observed that NO is scavenged by CORM-2. When used alone CORM-2 relaxed vessels through a cGMP-mediated pathway but attenuated NO donor-stimulated vasorelaxation. CONCLUSION: We conclude that the CORMs examined have context-dependent effects on vessel tone, as they can directly dilate blood vessels, but also block NO-induced vasorelaxation

    A questionnaire-based (UM-PDHQ) study of hallucinations in Parkinson's disease

    Get PDF
    Background: Hallucinations occur in 20-40% of PD patients and have been associated with unfavorable clinical outcomes (i.e., nursing home placement, increased mortality). Hallucinations, like other non-motor features of PD, are not well recognized in routine primary/secondary clinical practice. So far, there has been no instrument for uniform characterization of hallucinations in PD. To this end, we developed the University of Miami Parkinson's disease Hallucinations Questionnaire (UM-PDHQ) that allows comprehensive assessment of hallucinations in clinical or research settings.Methods: The UM-PDHQ is composed of 6 quantitative and 14 qualitative items. For our study PD patients of all ages and in all stages of the disease were recruited over an 18-month period. The UPDRS, MMSE, and Beck Depression and Anxiety Inventories were used for comparisons.Results and Discussion: Seventy consecutive PD patients were included in the analyses. Thirty-one (44.3%) were classified as hallucinators and 39 as non-hallucinators. No significant group differences were observed in terms of demographics, disease characteristics, stage, education, depressive/anxiety scores or cognitive functioning (MMSE) between hallucinators and non-hallucinators. Single mode hallucinations were reported in 20/31 (visual/14, auditory/4, olfactory/2) whereas multiple modalities were reported in 11/31 patients. The most common hallucinatory experience was a whole person followed by small animals, insects and reptiles.Conclusion: Using the UM-PDHQ, we were able to define the key characteristics of hallucinations in PD in our cohort. Future directions include the validation of the quantitative part of the questionnaire than will serve as a rating scale for severity of hallucinations

    Acute administration of the olive constituent, oleuropein, combined with ischemic postconditioning increases myocardial protection by modulating oxidative defense

    Get PDF
    Oleuropein, one of the main polyphenolic constituents of olive, is cardioprotective against ischemia reperfusion injury (IRI). We aimed to assess the cardioprotection afforded by acute administration of oleuropein and to evaluate the underlying mechanism. Importantly, since antioxidant therapies have yielded inconclusive results in attenuating IRI-induced damage on top of conditioning strategies, we investigated whether oleuropein could enhance or imbed the cardioprotective manifestation of ischemic postconditioning (PostC). Oleuropein, given during ischemia as a single intravenous bolus dose reduced the infarct size compared to the control group both in rabbits and mice subjected to myocardial IRI. None of the inhibitors of the cardioprotective pathways, l-NAME, wortmannin and AG490, influence its infarct size limiting effects. Combined oleuropein and PostC cause further limitation of infarct size in comparison with PostC alone in both animal models. Oleuropein did not inhibit the calcium induced mitochondrial permeability transition pore opening in isolated mitochondria and did not increase cGMP production. To provide further insights to the different cardioprotective mechanism of oleuropein, we sought to characterize its anti-inflammatory potential in vivo. Oleuropein, PostC and their combination reduce inflammatory monocytes infiltration into the heart and the circulating monocyte cell population. Oleuropein's mechanism of action involves a direct protective effect on cardiomyocytes since it significantly increased their viability following simulated IRI as compared to non-treated cells. ĪŸleuropein confers additive cardioprotection on top of PostC, via increasing the expression of the transcription factor Nrf-2 and its downstream targets in vivo. In conclusion, acute oleuropein administration during ischemia in combination with PostC provides robust and synergistic cardioprotection in experimental models of IRI by inducing antioxidant defense genes through Nrf-2 axis and independently of the classic cardioprotective signaling pathways (RISK, cGMP/PKG, SAFE)

    A Genomic Pathway Approach to a Complex Disease: Axon Guidance and Parkinson Disease

    Get PDF
    While major inroads have been made in identifying the genetic causes of rare Mendelian disorders, little progress has been made in the discovery of common gene variations that predispose to complex diseases. The single gene variants that have been shown to associate reproducibly with complex diseases typically have small effect sizes or attributable risks. However, the joint actions of common gene variants within pathways may play a major role in predisposing to complex diseases (the paradigm of complex genetics). The goal of this study was to determine whether polymorphism in a candidate pathway (axon guidance) predisposed to a complex disease (Parkinson disease [PD]). We mined a whole-genome association dataset and identified single nucleotide polymorphisms (SNPs) that were within axon-guidance pathway genes. We then constructed models of axon-guidance pathway SNPs that predicted three outcomes: PD susceptibility (odds ratio = 90.8, p = 4.64 Ɨ 10āˆ’38), survival free of PD (hazards ratio = 19.0, p = 5.43 Ɨ 10āˆ’48), and PD age at onset (R2 = 0.68, p = 1.68 Ɨ 10āˆ’51). By contrast, models constructed from thousands of random selections of genomic SNPs predicted the three PD outcomes poorly. Mining of a second whole-genome association dataset and mining of an expression profiling dataset also supported a role for many axon-guidance pathway genes in PD. These findings could have important implications regarding the pathogenesis of PD. This genomic pathway approach may also offer insights into other complex diseases such as Alzheimer disease, diabetes mellitus, nicotine and alcohol dependence, and several cancers
    • ā€¦
    corecore