3 research outputs found

    疫学アプローチを用いた大気汚染の循環器疾患リスクファクターに対する影響の研究:タイにおける縦断コホート研究

    Get PDF
    京都大学新制・課程博士博士(工学)甲第23494号工博第4906号新制||工||1766(附属図書館)京都大学大学院工学研究科都市環境工学専攻(主査)教授 高野 裕久, 教授 米田 稔, 准教授 上田 佳代学位規則第4条第1項該当Doctor of Philosophy (Engineering)Kyoto UniversityDFA

    Long-term air pollution exposure and self-reported morbidity:a longitudinal analysis from the Thai cohort study (TCS)

    Get PDF
    Several studies have shown the health effects of air pollutants, especially in China, North American and Western European countries. But longitudinal cohort studies focused on health effects of long-term air pollution exposure are still limited in Southeast Asian countries where sources of air pollution, weather conditions, and demographic characteristics are different. The present study examined the association between long-term exposure to air pollution and self-reported morbidities in participants of the Thai cohort study (TCS) in Bangkok metropolitan region (BMR), Thailand.This study was supported by the International Collaborative Research Grants Scheme with joint grants from the Wellcome Trust UK (grant number GR071587MA) and the Australian National Health and Medical Research Council (NHMRC) (grant number 268055). It was also supported by a global health grant from the NHMRC (grant number 585426)

    Long-term air pollution exposure and serum lipids and blood sugar: A longitudinal cohort study from the electricity generating authority of Thailand study

    No full text
    Only a few studies have investigated the association between long-term exposure to air pollution and alterations of serum lipids and blood sugar level in developing countries. The present longitudinal study examined associations between long-term air pollution exposure and serum lipids [total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C)] and fasting glucose (FG) in workers of the Electricity Generating Authority of Thailand (EGAT) in the Bangkok metropolitan region (BMR) of Thailand. We performed secondary analyses using the data obtained from 1, 839 participants (mean age, 58.3 years as of 2002) of the EGAT1 cohort study (2002–2012). The average concentration of each air pollutants (PM₁₀, O₃, NO₂, SO₂, and CO) at the sub-district level in BMR from 2002 to 2012 were estimated using the ordinary kriging method. Exposure periods were averaged to 3 months prior to laboratory testing. Linear mixed effects models were used to estimate associations between air pollution and serum lipids and blood sugar. After controlling for potential confounders, an interquartile range increment of PM₁₀, SO₂, and CO was associated with elevated LDL-C [6.6% (95%CI: 4.3, 9.0), 11.1% (7.2, 15.2), and 1.9% (1.1, 2.7), respectively] and FG [2.8% (1.5, 4.2), 6.8% (4.5, 9.1), and 1.1% (0.6, 1.5), respectively]. In addition, PM10, SO2, and CO were inversely associated with HDL-C [-1.8% (−3.7, 0.1), −3.3% (−6.2, −0.3), and −1.1 (−1.7, −0.5), respectively]. O₃ was negatively associated with TC, LDL-C, TG, and FG. These findings suggest inhalation of air pollutants may increase the risk of impaired metabolism of glucose and lipids
    corecore