26 research outputs found

    Meiotic drive and sex determination: molecular and cytological mechanisms of sex ratio adjustment in birds

    No full text
    Differences in relative fitness of male and female offspring across ecological and social environments should favour the evolution of sex-determining mechanisms that enable adjustment of brood sex ratio to the context of breeding. Despite the expectation that genetic sex determination should not produce consistent bias in primary sex ratios, extensive and adaptive modifications of offspring sex ratio in relation to social and physiological conditions during reproduction are often documented. Such discordance emphasizes the need for empirical investigation of the proximate mechanisms for modifying primary sex ratios, and suggests epigenetic effects on sex-determining mechanisms as the most likely candidates. Birds, in particular, are thought to have an unusually direct opportunity to modify offspring sex ratio because avian females are heterogametic and because the sex-determining division in avian meiosis occurs prior to ovulation and fertilization. However, despite evidence of strong epigenetic effects on sex determination in pre-ovulatory avian oocytes, the mechanisms behind such effects remain elusive. Our review of molecular and cytological mechanisms of avian meiosis uncovers a multitude of potential targets for selection on biased segregation of sex chromosomes, which may reflect the diversity of mechanisms and levels on which such selection operates in birds. Our findings indicate that pronounced differences between sex chromosomes in size, shape, size of protein bodies, alignment at the meiotic plate, microtubule attachment and epigenetic markings should commonly produce biased segregation of sex chromosomes as the default state, with secondary evolution of compensatory mechanisms necessary to maintain unbiased meiosis. We suggest that it is the epigenetic effects that modify such compensatory mechanisms that enable context-dependent and precise adjustment of primary sex ratio in birds. Furthermore, we highlight the features of avian meiosis that can be influenced by maternal hormones in response to environmental stimuli and may account for the precise and adaptive patterns of offspring sex ratio adjustment observed in some species

    Hybridization of glaucous gull (Larus hyperboreus) and herring gull (Larus argentatus) in Iceland: mitochondrial and microsatellite data

    No full text
    Large white-headed gulls provide an interesting group of birds for studies of hybridization. The group is composed of 20 species of recent origin, often with weak reproductive barriers. Here we report the results from a study on the glaucous gull Larus hyperboreus, an Arctic species which has been breeding in Iceland for centuries, and the herring gull Larus argentatus which has a wide distribution in Europe but colonized Iceland in 1920s. Previous studies, based on morphological variation indicated hybridization between the two species in Iceland, have been questioned as it may just reflect variation within the species. Here we evaluate whether hybridization has occurred between the two species in Iceland by studying variation in microsatellites and mtDNA. The analysis is based on feathers taken from wings sampled in Iceland over a period of 40 years. The results are compared with samples obtained from East Greenland and published sequences of samples obtained throughout Europe. The genetic analysis reveals a distinctive grouping of the two species, although they present a shallow genealogy and an extensive sharing of the genetic variants between the two species. Several individuals show admixture for molecular markers, which may result from an incomplete lineage sorting although geographical patterns of both mtDNA haplotypes and microsatellites strongly indicate a recent hybridization in Iceland
    corecore