723 research outputs found
On the accuracy of retrieved wind information from Doppler lidar observations
A single pulsed Doppler lidar was successfully deployed to measure air flow and turbulence over the Malvern hills, Worcester, UK. The DERA Malvern lidar used was a CO2 µm pulsed Doppler lidar. The lidar pulse repetition rate was 120 Hz and had a pulse duration of 0.6 µs The system was set up to have 41 range gates with range resolution of 112 m. This gave a theoretical maximum range of approximately 4.6 km. The lidar site was 2 km east of the Malvern hill ridge which runs in a north-south direction and is approximately 6 km long. The maximum height of the ridge is 430 m. Two elevation scans (Range-Height Indicators) were carried out parallel and perpendicular to the mean surface flow. Since the surface wind was primarily westerly the scans were carried out perpendicular and parallel to the ridge of the Malvern hills.
The data were analysed and horizontal winds, vertical winds and turbulent fluxes were calculated for profiles throughout the boundary layer. As an aid to evaluating the errors associated with the derivation of velocity and turbulence profiles, data from a simple idealized profile was also analysed using the same method. The error analysis shows that wind velocity profiles can be derived to an accuracy of 0.24 m s-1 in the horizontal and 0.3 m s-1 in the vertical up to a height of 2500 m. The potential for lidars to make turbulence measurements, over a wide area, through the whole depth of the planetary boundary layer and over durations from seconds to hours is discussed
Charges, Monopoles and Duality Relations
A charge-monopole theory is derived from simple and self-evident postulates.
Charges and monopoles take an analogous theoretical structure. It is proved
that charges interact with free waves emitted from monopoles but not with the
corresponding velocity fields. Analogous relations hold for monopole equations
of motion. The system's equations of motion can be derived from a regular
Lagrangian function.Comment: 17 pages + 3 figures
A Determination of the Wave Forms and Laws of Propagation and Dissipation of Ballistic Shock Waves
Experiments to ascertain the wave forms and laws of propagation and dissipation of ballistic shock waves to large distances (80 yards) from the bullet trajectory are described. Calibers 0.30, 0.50, 20 mm, and 40 mm were studied. In every case an N‐shaped wave profile was observed consisting of a sudden rise in pressure, the “head discontinuity,” followed by an approximately linear decline to a pressure about equally far below atmospheric and then a second sudden return, the “tail discontinuity,” to atmospheric pressure. The peak amplitudes of this disturbance are found to diminish about as the inverse 3/4 power of the miss‐distance (perpendicular distance from the trajectory) while the period T′ (measured between the discontinuous fronts) increases about as the 1/4 power of the miss‐distance for calibers 0.30, 0.50, and 20 mm. For 40‐mm shells the amplitude decays a little faster, about as the inverse 0.9 power of miss‐distance over the range studied. A theory taking account of the dissipation of the N‐wave energy into heat is developed to explain the observed behavior. A method of measuring absolute N‐wave amplitudes by observing the rate of change of period T′ with propagation is described. The theory leads to an absolute relationship at large distances between distance, amplitude, and period in which no arbitrary constants appear
From the ISR to RHIC--measurements of hard-scattering and jets using inclusive single particle production and 2-particle correlations
Hard scattering in p-p collisions, discovered at the CERN ISR in 1972 by the
method of leading particles, proved that the partons of Deeply Inelastic
Scattering strongly interacted with each other. Further ISR measurements
utilizing inclusive single or pairs of hadrons established that high pT
particles are produced from states with two roughly back-to-back jets which are
the result of scattering of constituents of the nucleons as desribed by Quantum
Chromodynamics (QCD), which was developed during the course of these
measurements. These techniques, which are the only practical method to study
hard-scattering and jet phenomena in Au+Au central collisions at RHIC energies,
are reviewed, as an introduction to present RHIC measurements.Comment: To appear in the proceedings of the workshop on Correlations and
Fluctuations in Relativistic Nuclear Collisions, MIT, Cambridge, MA, April
21-23, 2005, 10 pages, 9 figures, Journal of Physics: Conference Proceeding
Linear Momentum Density in Quasistatic Electromagnetic Systems
We discuss a couple of simple quasistatic electromagnetic systems in which
the density of electromagnetic linear momentum can be easily computed. The
examples are also used to illustrate how the total electromagnetic linear
momentum, which may also be calculated by using the vector potential, can be
understood as a consequence of the violation of the action-reaction principle,
because a non-null external force is required to maintain constant the
mechanical linear momentum. We show how one can avoid the divergence in the
interaction linear electromagnetic momentum of a system composed by an
idealization often used in textbooks (an infinite straight current) and a point
charge.Comment: 22 pages, 5 figures, to appear in Eur. J. Phy
The Constitutive Relations and the Magnetoelectric Effect for Moving Media
In this paper the constitutive relations for moving media with homogeneous
and isotropic electric and magnetic properties are presented as the connections
between the generalized magnetization-polarization bivector and
the electromagnetic field F. Using the decompositions of F and ,
it is shown how the polarization vector P(x) and the magnetization vector M(x)
depend on E, B and two different velocity vectors, u - the bulk velocity vector
of the medium, and v - the velocity vector of the observers who measure E and B
fields. These constitutive relations with four-dimensional geometric
quantities, which correctly transform under the Lorentz transformations (LT),
are compared with Minkowski's constitutive relations with the 3-vectors and
several essential differences are pointed out. They are caused by the fact
that, contrary to the general opinion, the usual transformations of the
3-vectors , , , , etc. are
not the LT. The physical explanation is presented for the existence of the
magnetoelectric effect in moving media that essentially differs from the
traditional one.Comment: 18 pages, In Ref. [10] here, which corresponds to Ref. [18] in the
published paper in IJMPB, Z. Oziewicz's published paper is added. arXiv admin
note: text overlap with arXiv:1101.329
Forces between electric charges in motion: Rutherford scattering, circular Keplerian orbits, action-at-a-distance and Newton's third law in relativistic classical electrodynamics
Standard formulae of classical electromagnetism for the forces between
electric charges in motion derived from retarded potentials are compared with
those obtained from a recently developed relativistic classical electrodynamic
theory with an instantaneous inter-charge force. Problems discussed include
small angle Rutherford scattering, Jackson's recent `torque paradox' and
circular Keplerian orbits. Results consistent with special relativity are
obtained only with an instantaneous interaction. The impossiblity of stable
circular motion with retarded fields in either classical electromagnetism or
Newtonian gravitation is demonstrated.Comment: 26 pages, 5 figures. QED and special relativity forbid retarded
electromagnetic forces. See also physics/0501130. V2 has typos corrected,
minor text modifications and updated references. V3 has further typos removed
and added text and reference
Unpolarized structure functions at Jefferson Lab
Over the past decade measurements of unpolarized structure functions at
Jefferson Lab with unprecedented precision have significantly advanced our
knowledge of nucleon structure. These have for the first time allowed
quantitative tests of the phenomenon of quark-hadron duality, and provided a
deeper understanding of the transition from hadron to quark degrees of freedom
in inclusive scattering. Dedicated Rosenbluth-separation experiments have
yielded high-precision transverse and longitudinal structure functions in
regions previously unexplored, and new techniques have enabled the first
glimpses of the structure of the free neutron, without contamination from
nuclear effects.Comment: 21 pages, 9 figures; typo in Eq. (3) corrected, references added; to
appear in J. Phys. Conf. Proc. "New Insights into the Structure of Matter:
The First Decade of Science at Jefferson Lab", eds. D. Higinbotham, W.
Melnitchouk, A. Thoma
Bounds on length scales of classical spacetime foam models
Simple models of a classical spacetime foam are considered, which consist of
identical static defects embedded in Minkowski spacetime. Plane-wave solutions
of the vacuum Maxwell equations with appropriate boundary conditions at the
defect surfaces are obtained in the long-wavelength limit. The corresponding
dispersion relations \omega^2=\omega^2(\vec{k}) are calculated, in particular,
the coefficients of the quadratic and quartic terms in \vec{k}. Astronomical
observations of gamma-ray bursts and ultra-high-energy cosmic rays then place
bounds on the coefficients of the dispersion relations and, thereby, on
particular combinations of the fundamental length scales of the static
spacetime-foam models considered. Spacetime foam models with a single length
scale are excluded, even models with a length scale close to the Planck length
(as long as a classical spacetime remains relevant).Comment: 22 pages with revtex4, v5: published versio
- …