24 research outputs found

    HopScotch - a low-power renewable energy base station network for rural broadband access

    Get PDF
    The provision of adequate broadband access to communities in sparsely populated rural areas has in the past been severely restricted. In this paper, we present a wireless broadband access test bed running in the Scottish Highlands and Islands which is based on a relay network of low-power base stations. Base stations are powered by a combination of renewable sources creating a low cost and scalable solution suitable for community ownership. The use of the 5~GHz bands allows the network to offer large data rates and the testing of ultra high frequency ``white space'' bands allow expansive coverage whilst reducing the number of base stations or required transmission power. We argue that the reliance on renewable power and the intelligent use of frequency bands makes this approach an economic green radio technology which can address the problem of rural broadband access

    An experimental and theoretical study of transient negative ions in Mg, Zn, Cd and Hg

    Get PDF
    A range of experimental and theoretical techniques have been applied to the study of transient negative ions (resonances) formed in electron scattering from the Group II metals Mg, Zn, Cd, and Hg at incident electron energies below the first ionization potential. A wealth of resonance structures have been observed and from the experimental observations and theoretical information, classifications are proposed for some of these negative ion states

    Performance Analysis of Microcellular Mobile Radio Systems with Selection Combining in the Presence of Arbitrary Number of Cochannel Interferences

    No full text
    In this paper, the performance of dual selection combining (SC) receiver in communications systems with a Rician desired signal affected by multiple Nakagami-m cochannel interferences (CCIs) is studied. This investigation is important since such environment seems to be the most realistic in microcellular radio communications systems. The performance analysis includes the channel correlation effect since in practice diversity is usually applied in small terminals so antenna elements can not be placed sufficiently apart to achieve independent fading channels. With assumption that CCIs are mutually independent and identically distributed, analytical expressions for the probability density function (PDF) and cumulative distribution function (CDF) of dual SC output signal-to-interference ratio (SIR) are derived and used to investigate important system performance measures, such as the average bit error probability (ABEP), channel capacity and outage probability. The proposed mathematical analysis is complemented by various graphically presented numerical results to show the effects of various system's parameters. In addition, the impact of diversity to the microcellular system's performance is also explored

    Low-energy electron-induced DNA damage: effect of base sequence in oligonucleotide trimers

    No full text
    DNA damage induced by low-energy electrons (LEEs) has attracted considerable attention in recent years because LEEs represent a large percentage of the total energy deposited by ionizing radiation and because LEEs have been shown to damage DNA components. In this article, we have studied the effect of base sequences in a series of oligonucleotide trimers by the analysis of damage remaining within the nonvolatile condensed phase after LEE irradiation. The model compounds include TXT, where X represents one of the four normal bases of DNA (thymine (T), cytosine (C), adenine (A), and guanine (G)). Using HPLC-UV analysis, several known fragments were quantified from the release of nonmodified nucleobases (T and X) as well as from phosphodiester C-O bond cleavage (pT, pXT, Tp, and TXp). The total damage was estimated by the disappearance of the parent peaks in the chromatogram of nonirradiated and irradiated samples. When trimers were irradiated with LEE (10 eV), the total damage decreased 2-fold in the following order: TTT > TCT > TAT > TGT. The release of nonmodified nuclobases (giving from 17 to 24% of the total products) mainly occurred from the terminal sites of trimers (i.e., T) whereas the release of central nucleobases was minor (C) or not at all detected (A and G). In comparison, the formation of products arising from phosphodiester bond cleavage accounted for 9 to 20% of the total damage and it partitioned to the four possible sites of cleavage present in trimers. This study indicates that the initial LEE capture and subsequent bond breaking within the intermediate anion depend on the sequence and electron affinity of the bases, with the most damage attributed to the most electronegative base, T
    corecore