1,446 research outputs found
The important role for intravenous iron in perioperative patient blood management in major abdominal surgery: a randomized controlled trial
Objective: To determine if preoperative intravenous (IV) iron improves outcomes in abdominal surgery patients. Summary Background Data: Preoperative iron deficiency anemia (IDA) occurs frequently; however if left untreated, increases the risk of blood transfusion allogeneic blood transfusion (ABT). Limited evidence supports IDA treatment with preoperative IV iron. This randomized controlled trial aimed to determine whether perioperative IV iron reduced the need for ABT. Methods: Between August 2011 and November 2014, 72 patients with IDA were assigned to receive either IV iron or usual care. The primary endpoint was incidence of ABT. Secondary endpoints were various hemoglobin (Hb) levels, change in Hb between time points, length of stay, iron status, morbidity, mortality, and quality of life 4 weeks postsurgery. Results: A 60% reduction in ABT was observed in the IV iron group compared with the usual care group (31.25% vs 12.5%). Hb values, although similar at randomization, improved by 0.8 g/dL with IV iron compared with 0.1 g/dL with usual care (P = 0.01) by the day of admission. The IV iron group had higher Hb 4 weeks after discharge compared with the usual care group (1.9 vs 0.9 g/dL, P = 0.01), and a shorter length of stay (7.0 vs 9.7 d, P = 0.026). There was no difference in discharge Hb levels, morbidity, mortality, or quality of life. Conclusions: Administration of perioperative IV iron reduces the need for blood transfusion, and is associated with a shorter hospital stay, enhanced restoration of iron stores, and a higher mean Hb concentration 4 weeks after surgery.Bernd Froessler, Peter Palm, Ingo Weber, Nicolette A. Hodyl, Rajvinder Singh and Elizabeth M. Murph
Towards understanding the variability in biospheric CO2 fluxes:Using FTIR spectrometry and a chemical transport model to investigate the sources and sinks of carbonyl sulfide and its link to CO2
Understanding carbon dioxide (CO2) biospheric processes is of great importance because the terrestrial exchange drives the seasonal and interannual variability of CO2 in the atmosphere. Atmospheric inversions based on CO2 concentration measurements alone can only determine net biosphere fluxes, but not differentiate between photosynthesis (uptake) and respiration (production). Carbonyl sulfide (OCS) could provide an important additional constraint: it is also taken up by plants during photosynthesis but not emitted during respiration, and therefore is a potential means to differentiate between these processes. Solar absorption Fourier Transform InfraRed (FTIR) spectrometry allows for the retrievals of the atmospheric concentrations of both CO2 and OCS from measured solar absorption spectra. Here, we investigate co-located and quasi-simultaneous FTIR measurements of OCS and CO2 performed at five selected sites located in the Northern Hemisphere. These measurements are compared to simulations of OCS and CO2 using a chemical transport model (GEOS-Chem). The coupled biospheric fluxes of OCS and CO2 from the simple biosphere model (SiB) are used in the study. The CO2 simulation with SiB fluxes agrees with the measurements well, while the OCS simulation reproduced a weaker drawdown than FTIR measurements at selected sites, and a smaller latitudinal gradient in the Northern Hemisphere during growing season when comparing with HIPPO (HIAPER Pole-to-Pole Observations) data spanning both hemispheres. An offset in the timing of the seasonal cycle minimum between SiB simulation and measurements is also seen. Using OCS as a photosynthesis proxy can help to understand how the biospheric processes are reproduced in models and to further understand the carbon cycle in the real world
Comparison of a thigh worn accelerometer algorithm with diary estimates of time in bed and time asleep: the 1970 British Cohort Study
Background: Thigh-worn accelerometers have established reliability and validity for measurement of free-living physical activity-related behaviors. However, comparisons of methods for measuring sleep and time in bed using the thigh-worn accelerometer are rare. The authors compared the thigh-worn accelerometer algorithm that estimates time in bed with the output of a sleep diary (time in bed and time asleep). Methods: Participants (N = 5,498), from the 1970 British Cohort Study, wore an activPAL device on their thigh continuously for 7 days and completed a sleep diary. Bland–Altman plots and Pearson correlation coefficients were used to examine associations between the algorithm derived and diary time in bed and asleep. Results: The algorithm estimated acceptable levels of agreement with time in bed when compared with diary time in bed (mean bias of −11.4 min; limits of agreement −264.6 to 241.8). The algorithm-derived time in bed overestimated diary sleep time (mean bias of 55.2 min; limits of agreement −204.5 to 314.8 min). Algorithm and sleep diary are reasonably correlated (ρ = .48, 95% confidence interval [.45, .52] for women and ρ = .51, 95% confidence interval [.47, .55] for men) and provide broadly comparable estimates of time in bed but not for sleep time. Conclusions: The algorithm showed acceptable estimates of time in bed compared with diary at the group level. However, about half of the participants were outside of the ±30 min difference of a clinically relevant limit at an individual level
Structural and Biophysical Insights into SPINK1 Bound to Human Cationic Trypsin
(1) The serine protease inhibitor Kazal type 1 (SPINK1) inhibits trypsin activity in zymogen granules of pancreatic acinar cells. Several mutations in the SPINK1 gene are associated with acute recurrent pancreatitis (ARP) and chronic pancreatitis (CP). The most common variant is SPINK1 p.N34S. Although this mutation was identified two decades ago, the mechanism of action has remained elusive. (2) SPINK1 and human cationic trypsin (TRY1) were expressed in E. coli, and inhibitory activities were determined. Crystals of SPINK1–TRY1 complexes were grown by using the hanging-drop method, and phases were solved by molecular replacement. (3) Both SPINK1 variants show similar inhibitory behavior toward TRY1. The crystal structures are almost identical, with minor differences in the mutated loop. Both complexes show an unexpected rotamer conformation of the His63 residue in TRY1, which is a member of the catalytic triad. (4) The SPINK1 p.N34S mutation does not affect the inhibitory behavior or the overall structure of the protein. Therefore, the pathophysiological mechanism of action of the p.N34S variant cannot be explained mechanistically or structurally at the protein level. The observed histidine conformation is part of a mechanism for SPINK1 that can explain the exceptional proteolytic stability of this inhibitor
Field-Orientation Dependent Heat Capacity Measurements at Low Temperatures with a Vector Magnet System
We describe a heat capacity measurement system for the study of the
field-orientation dependence for temperatures down to 50 mK. A "Vector Magnet"
combined with a mechanical rotator for the dewar enables the rotation of the
magnetic field without mechanical heating in the cryostat by friction. High
reproducibility of the field direction, as well as an angular resolution of
better than 0.01 degree, is obtained. This system is applicable to other kinds
of measurements which require a large sample space or an adiabatic sample
environment, and can also be used with multiple refrigerator inserts
interchangeably.Comment: 7 pages, 8 figure
A de Haas-van Alphen study of the filled skutterudite compounds PrOsAs and LaOsAs
Comprehensive magnetic-field-orientation dependent studies of the
susceptibility and de Haas-van Alphen effect have been carried out on single
crystals of the filled skutterudites PrOsAs and LaOsAs
using magnetic fields of up to 40~T. Several peaks are observed in the
low-field susceptibility of PrOsAs, corresponding to cascades of
metamagnetic transitions separating the low-field antiferromagnetic and
high-field paramagnetic metal (PMM) phases. The de Haas-van Alphen experiments
show that the Fermi-surface topologies of PrOsAs in its PMM phase
and LaOsAs are very similar. In addition, they are in reasonable
agreement with the predictions of bandstructure calculations for
LaOsAs on the PrOsAs lattice. Both observations suggest
that the Pr 4 electrons contribute little to the number of itinerant
quasiparticles in the PMM phase. However, whilst the properties of
LaOsAs suggest a conventional nonmagnetic Fermi liquid, the effects
of direct exchange and electron correlations are detected in the PMM phase of
PrOsAs. For example, the quasiparticle effective masses in
PrOsAs are found to decrease with increasing field, probably
reflecting the gradual suppression of magnetic fluctuations associated with
proximity to the low-temperature, low-field antiferromagnetic state
Size-resolved aerosol composition and its link to hygroscopicity at a forested site in Colorado
Aerosol hygroscopicity describes the ability of a particle to take up water
and form a cloud droplet. Modeling studies have shown sensitivity of
precipitation-producing cloud systems to the availability of aerosol
particles capable of serving as cloud condensation nuclei (CCN), and
hygroscopicity is a key parameter controlling the number of available CCN.
Continental aerosol is typically assumed to have a representative
hygroscopicity parameter, κ, of 0.3; however, in remote locations
this value can be lower due to relatively large mass fractions of organic
components. To further our understanding of aerosol properties in remote
areas, we measured size-resolved aerosol chemical composition and
hygroscopicity in a forested, mountainous site in Colorado during the
six-week BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols,
Carbon, H<sub>2</sub>O, Organics and Nitrogen–Rocky Mountain Biogenic
Aerosol Study) campaign. This campaign followed a year-long
measurement period at this site, and results from the intensive campaign
shed light on the previously reported seasonal cycle in aerosol
hygroscopicity. New particle formation events were observed routinely at
this site and nucleation mode composition measurements indicated that the
newly formed particles were predominantly organic. These events likely
contribute to the dominance of organic species at smaller sizes, where
aerosol organic mass fractions were between 70 and 90%. Corresponding
aerosol hygroscopicity was observed to be in the range κ = 0.15–0.22,
with hygroscopicity increasing with particle size. Aerosol chemical
composition measured by an aerosol mass spectrometer and calculated from
hygroscopicity measurements agreed very well during the intensive study, with
an assumed value of κ<sub>org</sub> = 0.13 resulting in the best
agreement
Infection by the castrating parasitic nematode <i>Sphaerularia bombi </i>changes gene expression in <i>Bombus terrestris </i>bumblebee queens
Parasitism can result in dramatic changes in host phenotype, which are themselves
underpinned by genes and their expression. Understanding how hosts respond at the molecular
level to parasites can therefore reveal the molecular architecture of an altered host phenotype.
The entomoparasitic nematode Sphaerularia bombi is a parasite of bumblebee (Bombus) hosts
where it induces complex behavioural changes and host castration. To examine this interaction
at the molecular level, we performed genome-wide transcriptional profiling using RNA-Seq of S.
bombi-infected Bombus terrestris queens at two critical time-points: during and just after
overwintering diapause. We found that infection by S. bombi affects the transcription of genes
underlying host biological processes associated with energy usage, translation, and circadian
rhythm. We also found that the parasite affects the expression of immune genes, including
members of the Toll signaling pathway providing evidence for a novel interaction between the
parasite and the host immune response. Taken together, our results identify host biological
processes and genes affected by an entomoparasitic nematode providing the first steps towards
a molecular understanding of this ecologically important host-parasite interaction
Reorientation of Anisotropy in a Square Well Quantum Hall Sample
We have measured magnetotransport at half-filled high Landau levels in a
quantum well with two occupied electric subbands. We find resistivities that
are {\em isotropic} in perpendicular magnetic field but become strongly {\em
anisotropic} at = 9/2 and 11/2 on tilting the field. The anisotropy
appears at an in-plane field, 2.5T, with the easy-current
direction {\em parallel} to but rotates by 90 at 10T and points now in the same direction as in single-subband samples.
This complex behavior is in quantitative agreement with theoretical
calculations based on a unidirectional charge density wave state model.Comment: 4 pages, 4 figure
- …