3 research outputs found

    Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers

    Get PDF
    Nutritional imbalances between predator and prey are the rule rather than the exception at the lower end of food webs. We investigated the role of different grazers in the propagation of nutritionally imbalanced primary production by using the same primary producers in a three-trophic-level food chain and a four-trophic-level food chain experimental setup. The three-trophic-level food chain consisted of a classic single-cell primary producer (Rhodomonas salina), a metazoan grazer (the copepod Acartia tonsa) and a top predator (the jellyfish Gonionemus vertens), while we added a protozoan grazer (Oxyrrhis marina) as primary consumer to the food chain to establish the four-trophic-level food chain. This setup allowed us to investigate how nutrient-limitation effects change from one trophic level to another, and to investigate the performance of two components of our experimental food chains in different trophic positions. Stoichiometry and fatty acid profiles of the algae showed significant differences between the nutrient-depleted [no N and no P addition (−P), respectively] and the nutrient-replete (f/2) treatments. The differences in stoichiometry could be traced when O. marina was the first consumer. Copepods feeding on these flagellates were not affected by the nutritional imbalance of their prey in their stoichiometry, their respiration rates nor in their developmental rates. In contrast, when copepods were the primary consumer, those reared on the −P algae showed significantly higher respiration rates along with significantly lower developmental rates. In neither of our two experimental food chains did the signals from the base of the food chains travel up to jelly fish, our top predator

    Differential routing of 'new' nitrogen toward higher trophic levels within the marine food web of the Gulf of Aqaba, Northern Red Sea

    Get PDF
    Mesozooplankton communities in the mesooligotrophic Gulf of Aqaba, Northern Red Sea, were investigated over a 2 years period (2005-2007) with emphasis on the trophodynamic relations among different taxonomic groups ranging from primary consumers to carnivorous predators. Based on stable isotope analyses, we present evidence for a strong contribution of 'new' nitrogen mainly derived from the utilization of aerosol nitrate by unicellular cyanobacteria especially during summer stratification and the propagation of exceptionally low δ15N onto higher trophic levels. In contrast, N2-fixation by diazotrophs seemed to play a minor role, while the utilization of deep water nitrate by cyanobacteria and eukaryotic algae might be of importance during winter mixing. Based on 15N enrichment of consumers, clear differences between exclusively herbivorous organisms (doliolids, appendicularians, pteropods) and those with omnivorous feeding modes were detected. The category of omnivores comprised a large variety of taxons ranging from small meroplanktonic larvae to non-calanoid copepods (harpacticoids, cyclopoids and poecilostomatoids) that together form a diverse and complex community with overlapping feeding modes. In addition, distinct seasonality patterns in δ15N of copepods were found showing elevated trophic positions during periods of winter mixing, which were most pronounced for non-calanoid copepods. In general, feeding modes of omnivores appeared rather unselective, and relative contributions of heterotrophic protists and degraded material to the diets of non-calanoid copepods are discussed. At elevated trophic positions, four groups of carnivore predators were identified, while calanoid copepods and meroplanktonic predators showing lowest 15N enrichment within the carnivores. The direct link between 'new' nitrogen utilization by primary producers and the 15N enrichment of consumers in the planktonic food web of the Gulf of Aqaba emphasizes the significant contribution of 'new' nitrogen to the nitrogen budget and ecosystem functions in subtropical and tropical oligotrophic oceans
    corecore