6,032 research outputs found

    Ghosts in asymmetric brane gravity and the decoupled stealth limit

    Get PDF
    We study the spectrum of gravitational perturbations around a vacuum de Sitter brane in a 5D asymmetric braneworld model, with induced curvature on the brane. This generalises the stealth acceleration model proposed by Charmousis, Gregory and Padilla (CGP) which realises the Cardassian cosmology in which power law cosmic acceleration can be driven by ordinary matter. Whenever the bulk has infinite volume we find that there is always a perturbative ghost propagating on the de Sitter brane, in contrast to the Minkowski brane case analysed by CGP. We discuss the implication of this ghost for the stealth acceleration model, and identify a limiting case where the ghost decouples as the de Sitter curvature vanishes.Comment: 21 page

    Infra-red modification of gravity from asymmetric branes

    Full text link
    We consider a single Minkowski brane sandwiched in between two copies of anti-de Sitter space. We allow the bulk Planck mass and cosmological constant to differ on either side of the brane. Linearised perturbations about this background reveal that gravity can be modified in the infra-red. At intermediate scales, the braneworld propagator mimics four-dimensional GR in that it has the correct momentum dependance. However it has the wrong tensor structure. Beyond a source dependant scale, we show that quadratic brane bending contributions become important, and conspire to correct the tensor structure of the propagator. We argue that even higher order terms can consistently be ignored up to very high energies, and suggest that there is no problem with strong coupling. We also consider scalar and vector perturbations in the bulk, checking for scalar ghosts.Comment: Version appearing in CQ

    Stealth Acceleration and Modified Gravity

    Full text link
    We show how to construct consistent braneworld models which exhibit late time acceleration. Unlike self-acceleration, which has a de Sitter vacuum state, our models have the standard Minkowski vacuum and accelerate only in the presence of matter, which we dub ``stealth-acceleration''. We use an effective action for the brane which includes an induced gravity term, and allow for an asymmetric set-up. We study the linear stability of flat brane vacua and find the regions of parameter space where the set-up is stable. The 4-dimensional graviton is only quasi-localised in this set-up and as a result gravity is modified at late times. One of the two regions is strongly coupled and the scalar mode is eaten up by an extra symmetry that arises in this limit. Having filtered the well-defined theories we then focus on their cosmology. When the graviton is quasi-localised we find two main examples of acceleration. In each case, we provide an illustrative model and compare it to LambdaCDM.Comment: 32 pages, 5 figure

    Towards a covariant model for cosmic self-acceleration

    Full text link
    An explicitly covariant formulation is presented of a modified DGP scenario proposed recently [1], to avoid the instability of the self-accelerating branch. It is based on the introduction of a bulk scalar field with appropriate non-minimal coupling to the bulk Einstein-Hilbert term. The method is general and may be applied to other models as well.Comment: 10 pages, no figures; v2: version published in JHE

    Cosmic acceleration from asymmetric branes

    Full text link
    We consider a single 3-brane sitting in between two different five dimensional spacetimes. On each side of the brane, the bulk is a solution to Gauss-Bonnet gravity, although the bare cosmological constant, funda mental Planck scale, and Gauss-Bonnet coupling can differ. This asymmetry leads to weighted junction conditions across the brane and interesting brane cosmology. We focus on two special cases: a generalized Randall-Sundrum model without any Gauss-Bonnet terms, and a stringy model, without any bare cosmological constants, and positive Gauss-Bonnet coupling. Even though we assume there is no vacuum energy on the brane, we find late time de Sitter cosmologies can occur. Remarkably, in certain parameter regions, this acceleration is preceded by a period of matter/radiation domination, with H2ρH^2 \propto \rho, all the way back to nucleosynthesis.Comment: Version appearing in CQ

    Galileon Hairs of Dyson Spheres, Vainshtein's Coiffure and Hirsute Bubbles

    Full text link
    We study the fields of spherically symmetric thin shell sources, a.k.a. Dyson spheres, in a {\it fully nonlinear covariant} theory of gravity with the simplest galileon field. We integrate exactly all the field equations once, reducing them to first order nonlinear equations. For the simplest galileon, static solutions come on {\it six} distinct branches. On one, a Dyson sphere surrounds itself with a galileon hair, which far away looks like a hair of any Brans-Dicke field. The hair changes below the Vainshtein scale, where the extra galileon terms dominate the minimal gradients of the field. Their hair looks more like a fuzz, because the galileon terms are suppressed by the derivative of the volume determinant. It shuts off the `hair bunching' over the `angular' 2-sphere. Hence the fuzz remains dilute even close to the source. This is really why the Vainshtein's suppression of the modifications of gravity works close to the source. On the other five branches, the static solutions are all {\it singular} far from the source, and shuttered off from asymptotic infinity. One of them, however, is really the self-accelerating branch, and the singularity is removed by turning on time dependence. We give examples of regulated solutions, where the Dyson sphere explodes outward, and its self-accelerating side is nonsingular. These constructions may open channels for nonperturbative transitions between branches, which need to be addressed further to determine phenomenological viability of multi-branch gravities.Comment: 29+1 pages, LaTeX, 2 .pdf figure

    The KINDRA project – towards Open Science in Hydrogeology for higher impact

    Get PDF
    Groundwater knowledge and research in the European Union is often scattered and non-standardised. Therefore, KINDRA is conducting an EU-wide assessment of existing groundwater-related practical and scientific knowledge based on a new Hydrogeological Research Classification System (HRC-SYS). The classification is supported by a web service, the European Inventory of Groundwater Research (EIGR), which acts not only as a knowledge repository but also as a tool to help identify relevant research topics, existing research trends and critical research challenges. These results will be useful for producing synergies, implementing policies and optimising water management in Europe. This article presents the work of the project during the first two years in relation to a common classification system and an activity for data collection and training delivered by the EFG’s National Associations in 20 European countries

    Galaxy interactions II: High density environments

    Full text link
    With the aim to assess the role of dense environments in galaxy interactions, properties we present an analysis of close galaxy pairs in groups and clusters, obtained from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). We identified pairs that reside in groups by cross-correlating the total galaxy pair catalogue with the SDSS-DR7 group catalogue from Zapata et al. (2009). We classify pair galaxies according to the intensity of interaction. We analysed the effect of high density environments on different classes of galaxy-galaxy interactions and we have also studied the impact of the group global environment on pair galaxies. We find that galaxy pairs are more concentrated towards the group centres with respect to the other group galaxy members, and disturbed pairs show a preference to contain the brightest galaxy in the groups. The color-magnitude relation exhibits significant differences between pair galaxies and the control sample, consisting in color tails with a clear excess of extremely blue and red galaxies for merging systems. In addition, pair galaxies show a significant excess of young stellar populations with respect to galaxies in the control sample; this finding suggests that, in dense environments, strong interactions produce an important effect in modifying galaxy properties. We find that the fraction of star forming galaxies decreases toward the group centre; however, galaxy pairs show a more efficient star formation activity than galaxies without a close companion. We have also found that pair galaxies prefer groups with low density global environments with respect to galaxies of the corresponding control sample. Blue, young stellar population galaxies prefer groups within low density global environments.Comment: 10 pages, 11 figures, accepted for publication in A&
    corecore