6 research outputs found

    Preformulation screening of lipids using solubility parameter concept in conjunction with experimental research to develop ceftriaxone loaded nanostructured lipid carriers

    Get PDF
    Development of ceftriaxone loaded nanostructured lipid carriers to increase permeability of ceftriaxone across uninflamed meninges after parenteral administration. Lipids were selected by theoretical and experimental techniques and optimization of NLCs done by response surface methodology using Box-Behnken design. The Δδt for glyceryl monostearate and Capryol90 were 4.39 and 2.92 respectively. The drug had maximum solubility of 0.175% (w/w) in glycerol monostearate and 2.56g of Capryol90 dissolved 10mg of drug. The binary mixture consisted of glyceryl monostearate and Capryol90 in a ratio of 70:30. The optimized NLCs particle size was 130.54nm, polydispersity index 0.28, % entrapment efficiency 44.32%, zeta potential -29.05mV, and % drug loading 8.10%. In vitro permeability of ceftriaxone loaded NLCs was 5.06x10-6 cm/s; evidently, the NLCs pervaded through uninflamed meninges, which, was further confirmed from in vivo biodistribution studies. The ratio of drug concentration between brain and plasma for ceftriaxone loaded NLCs was 0.29 and that for ceftriaxone solution was 0.02. With 44.32% entrapment of the drug in NLCs the biodistribution of ceftriaxone was enhanced 7.9 times compared with that of ceftriaxone solution. DSC and XRD studies revealed formation of imperfect crystalline NLCs. NLCs improved permeability of ceftriaxone through uninflamed meninges resulting in better management of CNS infections

    EFFECT OF ZEIN ON CIPROFLOXACIN FLOATING TABLETS

    Get PDF
    Objective: This work was aimed to formulate and evaluate the effect of zein on Ciprofloxacin HCl floating tablets. According to previous studies, it was set up to be useful against bacteria i.e. Helicobacter pylori which leads to peptic ulcers. Thus, it is quite necessary to enhance the Gastric Retention Time for similar medicines. Methods: 12 different floating tablets of Ciprofloxacin HCl were formulated with wet granulation method with a rise in the concentration of zein. Further, all different formulations prepared were evaluated for different parameters i.e. pre-compression considerations, along with post-compression factors like weight variation, content uniformity, thickness, visual assessment, hardness, friability, buoyancy studies i.e. total floating time as well as floating lag time, swelling index, dissolution and drug release kinetics. Results: The F6 formulation was considered to be among finest formulation with appropriate hardness. It was found that with the increasing concentration of zein, the hardness of tablets was also increased. It showed TFT of more than 7 h, FLT of 310 sec, a swelling index time of 99.5 % in 4 hr, while drug release kinetics was found to follow Higuchi Model. Conclusion: Overall it was also found that HPMCK-100M is more effective as compared to HPMC-K15M and Zein has a major role in increasing the hardness of tablets. In the future, the investigation will be continued with the following studies: An in vivo study and a long-term stability study

    Enhancement of bioavailability of herbal drugs for treating viral therapy using SNEDDS as the delivery system

    Get PDF
    SNEDDS were developed with the objective of treating low bioavailability of drugs for antiviral drugs due to its low solubility. The scientist has increased their interest in improving bioavailability and absorption of poorly-water soluble drugs using Self-Emulsifying lipid technology. SNEDDS was an isocratic mixture contains an Oil, Surfactant, Co-surfactant, and Drug in accurate amount. The SNEDDS was primarily prepared as liquid-SNEDDS, but S-SNEDDS was more stable as compared to L-SNEDDS. As viral infection was major threat for people due to its limited efficacy and Serious adverse effects. The most damaging viral diseases was treated with help of SNEDDS as delivery system. They were a leading cause of morbidity and mortality. The plant and plant source were major source from which the extracted metabolites used for synthesis of drug through metabolic pathway. The phytochemicals and extracts were better and safe alternative for synthetic drugs. The phytochemicals like Curcumin, Myricetin, Apigenin etc. used as drug for treating antivirals using SNEDDS. This technique was used for quantitative and qualitative analysis. Also, the ternary phase diagram gives dramatic representation of Oil, surfactant and Co-surfactant which shows its concentration. Some characterization techniques were Droplet size, Zeta potential, XRD, DSC, FTIR, and TGA. Also, QbD provides a platform for systemic production of drug formulations. QbD was used for its better bioavailability

    REVIEW ON COMPREHENSIVE DESCRIPTION OF DEVELOPMENT AND ASSESSMENT OF CO-CRYSTAL DRUG DELIVERY SYSTEM

    No full text
    Over the past few decades, co-crystal Drug Delivery System (DDS) has attracted interest due to their potential to increase the solubility, stability, and bioavailability of medications that aren't sufficiently soluble. In this study, we factualized to develop a co-crystal chemical delivery system utilizing an experimental model. We utilized caffeine and succinic acid as model chemicals and prepared co-crystals utilizing different methods including solvent evaporation, grinding, and spray drying. The co-crystals have been characterized utilizing X-ray powder diffraction, Fourier-transform infrared spectroscopy, and differential scanning calorimetry. The solubility and dissolution rate of the co-crystals has been evaluated in simulated digestive and intestinal juices The outcomes showed that when compared to co-crystals made utilizing the solvent evaporation and spray drying procedures, those organized utilizing the grinding approach exhibited the maximum solubility and dissolution rate. This study underlines the potential of co-crystals as a workable method for enhancing the administration of pharmaceuticals that are not adequately soluble and provides a helpful experimental paradigm for the development of co-crystal chemical delivery systems

    Preformulation screening of lipids using solubility parameter concept in conjunction with experimental research to develop ceftriaxone loaded nanostructured lipid carriers

    Get PDF
    Abstract Development of ceftriaxone loaded nanostructured lipid carriers to increase permeability of ceftriaxone across uninflamed meninges after parenteral administration. Lipids were selected by theoretical and experimental techniques and optimization of NLCs done by response surface methodology using Box-Behnken design. The Δδt for glyceryl monostearate and Capryol90 were 4.39 and 2.92 respectively. The drug had maximum solubility of 0.175% (w/w) in glycerol monostearate and 2.56g of Capryol90 dissolved 10mg of drug. The binary mixture consisted of glyceryl monostearate and Capryol90 in a ratio of 70:30. The optimized NLCs particle size was 130.54nm, polydispersity index 0.28, % entrapment efficiency 44.32%, zeta potential -29.05mV, and % drug loading 8.10%. In vitro permeability of ceftriaxone loaded NLCs was 5.06x10-6 cm/s; evidently, the NLCs pervaded through uninflamed meninges, which, was further confirmed from in vivo biodistribution studies. The ratio of drug concentration between brain and plasma for ceftriaxone loaded NLCs was 0.29 and that for ceftriaxone solution was 0.02. With 44.32% entrapment of the drug in NLCs the biodistribution of ceftriaxone was enhanced 7.9 times compared with that of ceftriaxone solution. DSC and XRD studies revealed formation of imperfect crystalline NLCs. NLCs improved permeability of ceftriaxone through uninflamed meninges resulting in better management of CNS infections

    NOVEL APPROACHES IN OCULAR DRUG DELIVERY-A REVOLUTION

    Get PDF
    Conveying the therapeutic agent to the human eye has been a struggling task for formulators and scientists because of the complicated arrangement of the eye. The therapeutic agents needed to deliver the drugs to specific sites of the eye require the crossing of various ocular barriers, which act as hitches for drug delivery. Conventional preparations present in the market do not achieve the desired therapeutic results due to their lower bioavailability, less retention time, or difficulty in reaching the site of action. In a need to overcome the challenges with these preparations, various modern technologies are being applied to address the same with outstanding results. The purpose of the present review is to focus on several innovative approaches, viz., the development of novel ocular drug delivery systems including liposomes, niosomes, nano-wafers, cubosomes, microneedles, dendrimers, and many others, adopted to combat various ocular diseases. In the present review, various novel formulations and drug delivery approaches have been taken into consideration, as developed, and reported by various scientists and researchers working in the field of ocular drug delivery systems
    corecore