7 research outputs found

    Effect of a web-based chronic disease management system on asthma control and health-related quality of life: study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asthma is a prevalent and costly disease resulting in reduced quality of life for a large proportion of individuals. Effective patient self-management is critical for improving health outcomes. However, key aspects of self-management such as self-monitoring of behaviours and symptoms, coupled with regular feedback from the health care team, are rarely addressed or integrated into ongoing care. Health information technology (HIT) provides unique opportunities to facilitate this by providing a means for two way communication and exchange of information between the patient and care team, and access to their health information, presented in personalized ways that can alert them when there is a need for action. The objective of this study is to evaluate the acceptability and efficacy of using a web-based self-management system, My Asthma Portal (MAP), linked to a case-management system on asthma control, and asthma health-related quality of life.</p> <p>Methods</p> <p>The trial is a parallel multi-centered 2-arm pilot randomized controlled trial. Participants are randomly assigned to one of two conditions: a) MAP and usual care; or b) usual care alone. Individuals will be included if they are between 18 and 70, have a confirmed asthma diagnosis, and their asthma is classified as not well controlled by their physician. Asthma control will be evaluated by calculating the amount of fast acting beta agonists recorded as dispensed in the provincial drug database, and asthma quality of life using the Mini Asthma Related Quality of Life Questionnaire. Power calculations indicated a needed total sample size of 80 subjects. Data are collected at baseline, 3, 6, and 9 months post randomization. Recruitment started in March 2010 and the inclusion of patients in the trial in June 2010.</p> <p>Discussion</p> <p>Self-management support from the care team is critical for improving chronic disease outcomes. Given the high volume of patients and time constraints during clinical visits, primary care physicians have limited time to teach and reinforce use of proven self-management strategies. HIT has the potential to provide clinicians and a large number of patients with tools to support health behaviour change.</p> <p>Trial Registration</p> <p>Current Controlled Trials <a href="http://www.controlled-trials.com/ISRCTN34326236">ISRCTN34326236</a>.</p

    Effect of particle size reduction and crystalline form on dissolution behaviour of nimesulide

    No full text
    The objective of this study was to develop and examine innovative and very simple and easily scalable techniques able to improve solubility and/or dissolution rate and thus oral bioavailability of nimesulide. Three different nimesulide batches were obtained by three different laboratory-scale methods: Method A (Batch A) used crystallization by solvent evaporation in a nanospray dryer, Method B (Batches G and GLN) involved cryo-milling, and Method C (Batch Neu) dispersed nimesulide in Neusilin(A (R)) UFL2. All the nimesulide batches were fully characterized for chemical stability, thermal behaviour, physicochemical and micromeritics properties, and intrinsic dissolution and particle dissolution rates. Batch A not only showed a good reduction in particle size but also exhibited a reduced degree of crystallinity by both differential scanning calorimetry and X-ray powder diffractometry, which could explain the increase in intrinsic dissolution rate (IDR) and particle dissolution. Batch GLN showed an acceptable increase in IDR, probably caused by a slight decrease in the degree of crystallinity, and good improvement in dissolution rate due to a certain decrease in particle size. Batches G and native crystals exhibited very close IDRs, while G showed somewhat higher particle dissolution, probably attributed to the particle size reduction. The dispersion of nimesulide in Neusilin UFL2 in a 1:6 drug-polymer ratio made it possible to recover anamorphous powder, as proven by thermal analysis and X-ray powder diffractometry, characterized by pronounced particle size reduction to nanometric dimensions. Both amorphous character and nanometric dimensions could account for the fastest particle dissolution during the first 10 min of the experiment. The stability study conducted according to the International Conference on Harmonization (ICH) confirmed the good chemical and physicochemical stability of all the batches
    corecore