20 research outputs found

    Modelling pulmonary microthrombosis coupled to metastasis: distinct effects of thrombogenesis on tumorigenesis

    Get PDF
    Thrombosis can cause localized ischemia and tissue hypoxia, and both of these are linked to cancer metastasis. Vascular micro-occlusion can occur as a result of arrest of circulating tumour cells in small capillaries, giving rise to microthrombotic events that affect flow, creating localized hypoxic regions. To better understand the association between metastasis and thrombotic events, we generated an experimental strategy whereby we modelled the effect of microvascular occlusion in metastatic efficiency by using inert microbeads to obstruct lung microvasculature before, during and after intravenous tumour cell injection. We found that controlled induction of a specific number of these microthrombotic insults in the lungs caused an increase in expression of the hypoxia-inducible transcription factors (HIFs), a pro-angiogenic and pro-tumorigenic environment, as well as an increase in myeloid cell infiltration. Induction of pulmonary microthrombosis prior to introduction of tumour cells to the lungs had no effect on tumorigenic success, but thrombosis at the time of tumour cell seeding increased number and size of tumours in the lung, and this effect was strikingly more pronounced when the micro-occlusion occurred on the day following introduction of tumour cells. The tumorigenic effect of microbead treatment was seen even when thrombosis was induced five days after tumour cell injection. We also found positive correlations between thrombotic factors and expression of HIF2α\alpha in human tumours. The model system described here demonstrates the importance of thrombotic insult in metastatic success and can be used to improve understanding of thrombosis-associated tumorigenesis and its treatment.Research was supported through a Wellcome Trust Principal Research Fellowship to R.S.J. (RG59596). C.B. is supported through a Scientific Fellowship from Breast Cancer Now (2014MaySF275). C.E.E. received a Pump-Priming Grant from the University of Cambridge British Heart Foundation Centre of Research Excellence (RG68639)

    Lorenz Poellinger MD, PhD (1957–2016)

    No full text

    miR-155 harnesses Phf19 to potentiate cancer immunotherapy through epigenetic reprogramming of CD8+ T cell fate

    No full text
    T cell senescence and exhaustion are major barriers to successful cancer immunotherapy. Here we show that miR-155 increases CD8+ T cell antitumor function by restraining T cell senescence and functional exhaustion through epigenetic silencing of drivers of terminal differentiation. miR-155 enhances Polycomb repressor complex 2 (PRC2) activity indirectly by promoting the expression of the PRC2-associated factor Phf19 through downregulation of the Akt inhibitor, Ship1. Phf19 orchestrates a transcriptional program extensively shared with miR-155 to restrain T cell senescence and sustain CD8+ T cell antitumor responses. These effects rely on Phf19 histone-binding capacity, which is critical for the recruitment of PRC2 to the target chromatin. These findings establish the miR-155-Phf19-PRC2 as a pivotal axis regulating CD8+ T cell differentiation, thereby paving new ways for potentiating cancer immunotherapy through epigenetic reprogramming of CD8+ T cell fate.This research was supported by the Intramural Research Programs of the US National Institutes of Health, National Cancer Institute (ZIABC011480
    corecore