19 research outputs found

    Improved representation of the diurnal variation of warm season precipitation by an atmospheric general circulation model at a 10 km horizontal resolution

    Get PDF
    This study investigates the diurnal variation of the warm season precipitation simulated by the Goddard Earth Observing System version 5 atmospheric general circulation model for 2??years (2005???2006) at a horizontal resolution of 10??km. The simulation was validated with the satellite-derived Tropical Rainfall Measuring Mission (TRMM) 3B42 precipitation data and the Modern-Era Retrospective analysis for Research and Applications atmospheric reanalysis for atmospheric winds and moisture. The simulation is compared with the coarse-resolution run in 50??km to examine the impacts driven by resolution change. Overall, the 10??km model tends to reproduce the important features of the observed diurnal variation, such as the amplitude and phase at which precipitation peaks in the evening on land and in the morning over the ocean, despite an excessive amplitude bias over land. The model also reproduces the realistic propagation patterns of precipitation in the vicinity of ocean coasts and major mountains. The regional characteristics of the diurnal precipitation over two regions, the Bay of Bengal and the Great Plains in North America, are examined in detail, where the observed diurnal cycle exhibits a systematic transition in the peak phase due to the development and propagation of regional-scale convective systems. The model is able to reproduce this pattern as well as the diurnal variation of low-level wind and moisture convergence; however, it is less effective at representing the nocturnal peak of precipitation over the Great Plains. The model results suggest that increasing the horizontal resolution of the model to 10??km substantially improves the representation of the diurnal precipitation cycle. However, intrinsic model deficiencies in topographical precipitation and the accurate representation of mesoscale convective systems remain a challenge

    Assessment of Planetary Boundary-Layer Schemes in the Weather Research and Forecasting Mesoscale Model Using MATERHORN Field Data

    No full text
    The study was aimed at understanding the deficiencies of numerical mesoscale models by comparing predictions with a new high-resolution meteorological dataset collected during the Mountain Terrain Atmospheric Modelling and Observations (MATERHORN) Program. The simulations focussed on the stable boundary layer (SBL), the predictions of which continue to be challenging. High resolution numerical simulations (0.5-km horizontal grid size) were conducted to investigate the efficacy of six planetary boundary-layer (PBL) parametrizations available in the advanced research version of the Weather Research and Forecasting model. One of the commonly used PBL schemes was modified to include eddy diffusivities that account for enhanced momentum transport compared to heat transport in the SBL, representing internal wave dynamics. All of the tested PBL schemes, including the modified scheme, showed a positive surface temperature bias. None of the PBL schemes was found to be superior in predicting the vertical wind and temperature profiles over the lowest 500 m, however two of the schemes appeared superior in capturing the lower PBL structure. The lowest model layers appear to have a significant impact on the predictions aloft. Regions of sporadic flow interactions delineated by the MATERHORN observations were poorly predicted, given such interactions are not represented in typical PBL schemes
    corecore