19 research outputs found

    A fruit firmness QTL identified on linkage group 4 in sweet cherry (<em>Prunus avium</em> L.) is associated with domesticated and bred germplasm.

    No full text
    Fruit firmness is an important market driven trait in sweet cherry (Prunus avium L.) where the desirable increase in fruit firmness is associated with landrace and bred cultivars. The aim of this work was to investigate the genetic basis of fruit firmness using plant materials that include wild cherry (syn. mazzard), landrace and bred sweet cherry germplasm. A major QTL for fruit firmness, named qP-FF4.1, that had not previously been reported, was identified in three sweet cherry populations. Thirteen haplotypes (alleles) associated with either soft or firm fruit were identified for qP-FF4.1 in the sweet cherry germplasm, and the "soft" alleles were dominant over the "firm" alleles. The finding that sweet cherry individuals that are homozygous for the "soft" alleles for qP-FF4.1 are exclusively mazzards and that the vast majority of the bred cultivars are homozygous for "firm" alleles suggests that this locus is a signature of selection. Candidate genes related to plant cell wall modification and various plant hormone signaling pathways were identified, with an expansin gene being the most promising candidate. These results advance our understanding of the genetic basis of fruit firmness and will help to enable the use of DNA informed breeding for this trait in sweet cherry breeding programs

    A continuum mechanics model of enzyme-based tissue degradation in cancer therapies

    Get PDF
    We propose a mathematical model to describe enzyme-based tissue degradation in cancer therapies. The proposed model combines the poroelastic theory of mixtures with the transport of enzymes or drugs in the extracellular space. The effect of the matrix degrading enzymes on the tissue composition and its mechanical response are accounted for. Numerical simulations in 1D, 2D and ax-isymmetric (3D) configurations show how an injection of matrix degrading enzymes alters the porosity of a biological tissue. We eventually exhibit numerically the main consequences of a matrix degrading enzyme pretreatment in the framework of chemotherapy: the removal of the diffusive hindrance to the penetration of therapeutic molecules in tumors and the reduction of interstitial fluid pressure which improves transcapillary transport. Both effects are consistent with previous biological observations
    corecore