58 research outputs found

    Impact of the frequency of online verifications on the patient set-up accuracy and set-up margins

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>The purpose of the study was to evaluate the patient set-up error of different anatomical sites, to estimate the effect of different frequencies of online verifications on the patient set-up accuracy, and to calculate margins to accommodate for the patient set-up error (ICRU set-up margin, SM).</p> <p>Methods and materials</p> <p>Alignment data of 148 patients treated with inversed planned intensity modulated radiotherapy (IMRT) or three-dimensional conformal radiotherapy (3D-CRT) of the head and neck (n = 31), chest (n = 72), abdomen (n = 15), and pelvis (n = 30) were evaluated. The patient set-up accuracy was assessed using orthogonal megavoltage electronic portal images of 2328 fractions of 173 planning target volumes (PTV). In 25 patients, two PTVs were analyzed where the PTVs were located in different anatomical sites and treated in two different radiotherapy courses. The patient set-up error and the corresponding SM were retrospectively determined assuming no online verification, online verification once a week and online verification every other day.</p> <p>Results</p> <p>The SM could be effectively reduced with increasing frequency of online verifications. However, a significant frequency of relevant set-up errors remained even after online verification every other day. For example, residual set-up errors larger than 5 mm were observed on average in 18% to 27% of all fractions of patients treated in the chest, abdomen and pelvis, and in 10% of fractions of patients treated in the head and neck after online verification every other day.</p> <p>Conclusion</p> <p>In patients where high set-up accuracy is desired, daily online verification is highly recommended.</p

    A Systems Biology-Based Classifier for Hepatocellular Carcinoma Diagnosis

    Get PDF
    AIM: The diagnosis of hepatocellular carcinoma (HCC) in the early stage is crucial to the application of curative treatments which are the only hope for increasing the life expectancy of patients. Recently, several large-scale studies have shed light on this problem through analysis of gene expression profiles to identify markers correlated with HCC progression. However, those marker sets shared few genes in common and were poorly validated using independent data. Therefore, we developed a systems biology based classifier by combining the differential gene expression with topological features of human protein interaction networks to enhance the ability of HCC diagnosis. METHODS AND RESULTS: In the Oncomine platform, genes differentially expressed in HCC tissues relative to their corresponding normal tissues were filtered by a corrected Q value cut-off and Concept filters. The identified genes that are common to different microarray datasets were chosen as the candidate markers. Then, their networks were analyzed by GeneGO Meta-Core software and the hub genes were chosen. After that, an HCC diagnostic classifier was constructed by Partial Least Squares modeling based on the microarray gene expression data of the hub genes. Validations of diagnostic performance showed that this classifier had high predictive accuracy (85.88∼92.71%) and area under ROC curve (approximating 1.0), and that the network topological features integrated into this classifier contribute greatly to improving the predictive performance. Furthermore, it has been demonstrated that this modeling strategy is not only applicable to HCC, but also to other cancers. CONCLUSION: Our analysis suggests that the systems biology-based classifier that combines the differential gene expression and topological features of human protein interaction network may enhance the diagnostic performance of HCC classifier

    Human physiologically based pharmacokinetic model for propofol

    Get PDF
    BACKGROUND: Propofol is widely used for both short-term anesthesia and long-term sedation. It has unusual pharmacokinetics because of its high lipid solubility. The standard approach to describing the pharmacokinetics is by a multi-compartmental model. This paper presents the first detailed human physiologically based pharmacokinetic (PBPK) model for propofol. METHODS: PKQuest, a freely distributed software routine , was used for all the calculations. The "standard human" PBPK parameters developed in previous applications is used. It is assumed that the blood and tissue binding is determined by simple partition into the tissue lipid, which is characterized by two previously determined set of parameters: 1) the value of the propofol oil/water partition coefficient; 2) the lipid fraction in the blood and tissues. The model was fit to the individual experimental data of Schnider et. al., Anesthesiology, 1998; 88:1170 in which an initial bolus dose was followed 60 minutes later by a one hour constant infusion. RESULTS: The PBPK model provides a good description of the experimental data over a large range of input dosage, subject age and fat fraction. Only one adjustable parameter (the liver clearance) is required to describe the constant infusion phase for each individual subject. In order to fit the bolus injection phase, for 10 or the 24 subjects it was necessary to assume that a fraction of the bolus dose was sequestered and then slowly released from the lungs (characterized by two additional parameters). The average weighted residual error (WRE) of the PBPK model fit to the both the bolus and infusion phases was 15%; similar to the WRE for just the constant infusion phase obtained by Schnider et. al. using a 6-parameter NONMEM compartmental model. CONCLUSION: A PBPK model using standard human parameters and a simple description of tissue binding provides a good description of human propofol kinetics. The major advantage of a PBPK model is that it can be used to predict the changes in kinetics produced by variations in physiological parameters. As one example, the model simulation of the changes in pharmacokinetics for morbidly obese subjects is discussed

    A new simplified comorbidity score as a prognostic factor in non-small-cell lung cancer patients: description and comparison with the Charlson's index

    Get PDF
    Treatment of non-small-cell lung cancer (NSCLC) might take into account comorbidities as an important variable. The aim of this study was to generate a new simplified comorbidity score (SCS) and to determine whether or not it improves the possibility of predicting prognosis of NSCLC patients. A two-step methodology was used. Step 1: An SCS was developed and its prognostic value was compared with classical prognostic determinants in the outcome of 735 previously untreated NSCLC patients. Step 2: the SCS reliability as a prognostic determinant was tested in a different population of 136 prospectively accrued NSCLC patients with a formal comparison between SCS and the classical Charlson comorbidity index (CCI). Prognosis was analysed using both univariate and multivariate (Cox model) statistics. The SCS summarised the following variables: tobacco consumption, diabetes mellitus and renal insufficiency (respective weightings 7, 5 and 4), respiratory, neoplastic and cardiovascular comorbidities and alcoholism (weighting=1 for each item). In step 1, aside from classical variables such as age, stage of the disease and performance status, SCS was a statistically significant prognostic variable in univariate analyses. In the Cox model weight loss, stage grouping, performance status and SCS were independent determinants of a poor outcome. There was a trend towards statistical significance for age (P=0.08) and leucocytes count (P=0.06). In Step 2, both SCS and well-known prognostic variables were found as significant determinants in univariate analyses. There was a trend towards a negative prognostic effect for CCI. In multivariate analysis, stage grouping, performance status, histology, leucocytes, lymphocytes, lactate dehydrogenase, CYFRA 21-1 and SCS were independent determinants of a poor prognosis. CCI was removed from the Cox model. In conclusion, the SCS, constructed as an independent prognostic factor in a large NSCLC patient population, is validated in another prospective population and appears more informative than the CCI in predicting NSCLC patient outcome

    Copy Number Variation in Patients with Disorders of Sex Development Due to 46,XY Gonadal Dysgenesis

    Get PDF
    Disorders of sex development (DSD), ranging in severity from mild genital abnormalities to complete sex reversal, represent a major concern for patients and their families. DSD are often due to disruption of the genetic programs that regulate gonad development. Although some genes have been identified in these developmental pathways, the causative mutations have not been identified in more than 50% 46,XY DSD cases. We used the Affymetrix Genome-Wide Human SNP Array 6.0 to analyse copy number variation in 23 individuals with unexplained 46,XY DSD due to gonadal dysgenesis (GD). Here we describe three discrete changes in copy number that are the likely cause of the GD. Firstly, we identified a large duplication on the X chromosome that included DAX1 (NR0B1). Secondly, we identified a rearrangement that appears to affect a novel gonad-specific regulatory region in a known testis gene, SOX9. Surprisingly this patient lacked any signs of campomelic dysplasia, suggesting that the deletion affected expression of SOX9 only in the gonad. Functional analysis of potential SRY binding sites within this deleted region identified five putative enhancers, suggesting that sequences additional to the known SRY-binding TES enhancer influence human testis-specific SOX9 expression. Thirdly, we identified a small deletion immediately downstream of GATA4, supporting a role for GATA4 in gonad development in humans. These CNV analyses give new insights into the pathways involved in human gonad development and dysfunction, and suggest that rearrangements of non-coding sequences disturbing gene regulation may account for significant proportion of DSD cases

    Failure of SOX9 Regulation in 46XY Disorders of Sex Development with SRY, SOX9 and SF1 Mutations

    Get PDF
    In human embryogenesis, loss of SRY (sex determining region on Y), SOX9 (SRY-related HMG box 9) or SF1 (steroidogenic factor 1) function causes disorders of sex development (DSD). A defining event of vertebrate sex determination is male-specific upregulation and maintenance of SOX9 expression in gonadal pre-Sertoli cells, which is preceded by transient SRY expression in mammals. In mice, Sox9 regulation is under the transcriptional control of SRY, SF1 and SOX9 via a conserved testis-specific enhancer of Sox9 (TES). Regulation of SOX9 in human sex determination is however poorly understood.We show that a human embryonal carcinoma cell line (NT2/D1) can model events in presumptive Sertoli cells that initiate human sex determination. SRY associates with transcriptionally active chromatin in NT2/D1 cells and over-expression increases endogenous SOX9 expression. SRY and SF1 co-operate to activate the human SOX9 homologous TES (hTES), a process dependent on phosphorylated SF1. SOX9 also activates hTES, augmented by SF1, suggesting a mechanism for maintenance of SOX9 expression by auto-regulation. Analysis of mutant SRY, SF1 and SOX9 proteins encoded by thirteen separate 46,XY DSD gonadal dysgenesis individuals reveals a reduced ability to activate hTES.We demonstrate how three human sex-determining factors are likely to function during gonadal development around SOX9 as a hub gene, with different genetic causes of 46,XY DSD due a common failure to upregulate SOX9 transcription

    Cerebral cortical effects of desflurane in sheep: comparison with isoflurane, sevoflurane and enflurane

    No full text
    The definitive version is available at www.blackwell-synergy.comBackground:  Different volatile anesthetic agents have differing propensities for inducing seizures. A measure of the predilection to develop seizures is the presence of interictal spike discharges (spikes) on the electrocorticogram (ECoG). In this study, we investigated the propensity of desflurane to induce cortical spikes and made a direct objective comparison with enflurane, isoflurane, and sevoflurane. The ECoG effects of desflurane have not been previously reported. Methods:  After establishment of invasive monitoring and a parasagittal array of eight electrodes to record the ECoG; eight adult merino sheep were given a series of short inhalational anesthetics (using desflurane, enflurane, sevoflurane and isoflurane); each titrated to ECoG burst suppression. Anesthetic effect was estimated by the effects on the approximate entropy of the ECoG. The effect of anesthetic on the spike-rate in the ECoG was analyzed using a non-linear mixed-effect method with a sigmoid Emax model. Results:  A similar `depth of anesthesia' was achieved for each agent, as estimated by the approximate entropy. The mean (SD) values of Emax for the spike-rate vs. approximate entropy relationship were desflurane 0.5 (0.9), enflurane 17.2 (4.0), isoflurane 0.7 (1.2), and sevoflurane 5.3 (1.2) spikes/min. The spike rate caused by desflurane was similar to isoflurane and significantly lower than that of enflurane (P > sevoflurane > isoflurane = desflurane.Voss, L.J.; Ludbrook, G.; Grant, C.; Sleigh, J.W. and Barnard, J.P.M
    • …
    corecore