16 research outputs found

    Sex-Specific Expression of the X-Linked Histone Demethylase Gene Jarid1c in Brain

    Get PDF
    Jarid1c, an X-linked gene coding for a histone demethylase, plays an important role in brain development and function. Notably, JARID1C mutations cause mental retardation and increased aggression in humans. These phenotypes are consistent with the expression patterns we have identified in mouse brain where Jarid1c mRNA was detected in hippocampus, hypothalamus, and cerebellum. Jarid1c expression and associated active histone marks at its 5′end are high in P19 neurons, indicating that JARID1C demethylase plays an important role in differentiated neuronal cells. We found that XX mice expressed Jarid1c more highly than XY mice, independent of their gonadal types (testes versus ovaries). This increased expression in XX mice is consistent with Jarid1c escape from X inactivation and is not compensated by expression from the Y-linked paralogue Jarid1d, which is expressed at a very low level compared to the X paralogue in P19 cells. Our observations suggest that sex-specific expression of Jarid1c may contribute to sex differences in brain function

    Is the Y chromosome disappearing?—Both sides of the argument

    Get PDF
    On August 31, 2011 at the 18th International Chromosome Conference in Manchester, Jenny Graves took on Jenn Hughes to debate the demise (or otherwise) of the mammalian Y chromosome. Sex chromosome evolution is an example of convergence; there are numerous examples of XY and ZW systems with varying degrees of differentiation and isolated examples of the Y disappearing in some lineages. It is agreed that the Y was once genetically identical to its partner and that the present-day human sex chromosomes retain only traces of their shared ancestry. The euchromatic portion of the male-specific region of the Y is ~1/6 of the size of the X and has only ~1/12 the number of genes. The big question however is whether this degradation will continue or whether it has reached a point of equilibrium. Jenny Graves argued that the Y chromosome is subject to higher rates of variation and inefficient selection and that Ys (and Ws) degrade inexorably. She argued that there is evidence that the Y in other mammals has undergone lineage-specific degradation and already disappeared in some rodent lineages. She also pointed out that there is practically nothing left of the original human Y and the added part of the human Y is degrading rapidly. Jenn Hughes on the other hand argued that the Y has not disappeared yet and it has been around for hundreds of millions of years. She stated that it has shown that it can outsmart genetic decay in the absence of "normal" recombination and that most of its genes on the human Y exhibit signs of purifying selection. She noted that it has added at least eight different genes, many of which have subsequently expanded in copy number, and that it has not lost any genes since the human and chimpanzee diverged ~6 million years ago. The issue was put to the vote with an exact 50/50 split among the opinion of the audience; an interesting (though perhaps not entirely unexpected) skew however was noted in the sex ratio of those for and against the notion
    corecore