19 research outputs found
Loss of chromosome 10 is an independent prognostic factor in high-grade gliomas
Loss of heterozygosity (LOH) for chromosome 10 is the most frequent genetic abnormality observed in high-grade gliomas. We have used fluorescent microsatellite markers to examine a series of 83 patients, 34 with anaplastic astrocytoma (grade 3) and 49 with glioblastoma multiforme (grade 4), for LOH of chromosome 10. Genotype analysis revealed LOH for all informative chromosome 10 markers in 12 (35%) of patients with grade 3 and 29 (59%) grade 4 tumours respectively, while partial LOH was found in a further eight (24%) grade 3 and ten (20%) grade 4 tumours. Partial LOH, was confined to the long arm (10q) in six and the short arm (10p) in three cases, while alleles from both arms were lost in four cases. Five tumours (one grade 3 and four grade 4) showed heterogeneity with respect to loss at different loci. There was a correlation between any chromosome 10 loss and poorer performance status at presentation (χ2P = 0.005) and with increasing age at diagnosis (Mann–Whitney U-test P = 0.034) but not with tumour grade (χ2P = 0.051). A Cox multivariate model for survival duration identified age (proportional hazards (PH), P = 0.004), grade (PH, P = 0.012) and any loss of chromosome 10 (PH, P = 0.009) as the only independent prognostic variables. Specifically, LOH for chromosome 10 was able to identify a subgroup of patients with grade 3 tumours who had a significantly shorter survival time. We conclude that LOH for chromosome 10 is an independent, adverse prognostic variable in high-grade glioma. © 1999 Cancer Research Campaig
Influence of Caloric Restriction on Constitutive Expression of NF-κB in an Experimental Mouse Astrocytoma
Many of the current standard therapies employed for the management of primary malignant brain cancers are largely viewed as palliative, ultimately because these conventional strategies have been shown, in many instances, to decrease patient quality of life while only offering a modest increase in the length of survival. We propose that caloric restriction (CR) is an alternative metabolic therapy for brain cancer management that will not only improve survival but also reduce the morbidity associated with disease. Although we have shown that CR manages tumor growth and improves survival through multiple molecular and biochemical mechanisms, little information is known about the role that CR plays in modulating inflammation in brain tumor tissue.Phosphorylation and activation of nuclear factor κB (NF-κB) results in the transactivation of many genes including those encoding cycloxygenase-2 (COX-2) and allograft inflammatory factor-1 (AIF-1), both of which are proteins that are primarily expressed by inflammatory and malignant cancer cells. COX-2 has been shown to enhance inflammation and promote tumor cell survival in both in vitro and in vivo studies. In the current report, we demonstrate that the p65 subunit of NF-κB was expressed constitutively in the CT-2A tumor compared with contra-lateral normal brain tissue, and we also show that CR reduces (i) the phosphorylation and degree of transcriptional activation of the NF-κB-dependent genes COX-2 and AIF-1 in tumor tissue, as well as (ii) the expression of proinflammatory markers lying downstream of NF-κB in the CT-2A malignant mouse astrocytoma, [e.g. macrophage inflammatory protein-2 (MIP-2)]. On the whole, our date indicate that the NF-κB inflammatory pathway is constitutively activated in the CT-2A astrocytoma and that CR targets this pathway and inflammation.CR could be effective in reducing malignant brain tumor growth in part by inhibiting inflammation in the primary brain tumor
Multidrug resistance proteins and topoisomerase II alpha expression in colon cancer: association with metastatic potential
Aims: To investigate the role of multidrug resistance proteins and
topoisomerase IIalpha in colon cancer.
Methods: Tissue sections from 89 Dukes’ stage B-D colon cancer patients
were selected. The expression of multidrug resistance proteins and
topoisomerase IIalpha in primary tumour cells was assessed by standard
immunohistochemistry. The extent of their expression was measured by
image analysis and was correlated with clinicopathological features of
the patients.
Results: P-glycoprotein was associated with the presence of lymph node
metastasis (P=0.005), vessel invasion (P=0.0001) and perineural invasion
(P=0.020).
Conclusions: P-glycoprotein is probably involved in the processes of
local invasion and metastatic dissemination