10 research outputs found
Differences in carbon emissions reduction between countries pursuing renewable electricity versus nuclear power
Two of the most widely emphasized contenders for carbon emissions reduction in the electricity sector are nuclear power and renewable energy. While scenarios regularly question the potential impacts of adoption of various technology mixes in the future, it is less clear which technology has been associated with greater historical emission reductions. Here, we use multiple regression analyses on global datasets of national carbon emissions and renewable and nuclear electricity production across 123 countries over 25 years to examine systematically patterns in how countries variously using nuclear power and renewables contrastingly show higher or lower carbon emissions. We find that larger-scale national nuclear attachments do not tend to associate with significantly lower carbon emissions while renewables do. We also find a negative association between the scales of national nuclear and renewables attachments. This suggests nuclear and renewables attachments tend to crowd each other out
Earth: Atmospheric Evolution of a Habitable Planet
Our present-day atmosphere is often used as an analog for potentially
habitable exoplanets, but Earth's atmosphere has changed dramatically
throughout its 4.5 billion year history. For example, molecular oxygen is
abundant in the atmosphere today but was absent on the early Earth. Meanwhile,
the physical and chemical evolution of Earth's atmosphere has also resulted in
major swings in surface temperature, at times resulting in extreme glaciation
or warm greenhouse climates. Despite this dynamic and occasionally dramatic
history, the Earth has been persistently habitable--and, in fact,
inhabited--for roughly 4 billion years. Understanding Earth's momentous changes
and its enduring habitability is essential as a guide to the diversity of
habitable planetary environments that may exist beyond our solar system and for
ultimately recognizing spectroscopic fingerprints of life elsewhere in the
Universe. Here, we review long-term trends in the composition of Earth's
atmosphere as it relates to both planetary habitability and inhabitation. We
focus on gases that may serve as habitability markers (CO2, N2) or
biosignatures (CH4, O2), especially as related to the redox evolution of the
atmosphere and the coupled evolution of Earth's climate system. We emphasize
that in the search for Earth-like planets we must be mindful that the example
provided by the modern atmosphere merely represents a single snapshot of
Earth's long-term evolution. In exploring the many former states of our own
planet, we emphasize Earth's atmospheric evolution during the Archean,
Proterozoic, and Phanerozoic eons, but we conclude with a brief discussion of
potential atmospheric trajectories into the distant future, many millions to
billions of years from now. All of these 'Alternative Earth' scenarios provide
insight to the potential diversity of Earth-like, habitable, and inhabited
worlds.Comment: 34 pages, 4 figures, 4 tables. Review chapter to appear in Handbook
of Exoplanet
Recommended from our members
Enhanced weathering strategies for stabilizing climate and averting ocean acidification
Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m-2 yr-1) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions
The energy expansions of evolution
The history of the life-Earth system can be divided into five 'energetic' epochs, each featuring the evolution of life forms that can exploit a new source of energy. These sources are: geochemical energy, sunlight, oxygen, flesh and fire. The first two were present at the start, but oxygen, flesh and fire are all consequences of evolutionary events. Since no category of energy source has disappeared, this has, over time, resulted in an expanding realm of the sources of energy available to living organisms and a concomitant increase in the diversity and complexity of ecosystems. These energy expansions have also mediated the transformation of key aspects of the planetary environment, which have in turn mediated the future course of evolutionary change. Using energy as a lens thus illuminates patterns in the entwined histories of life and Earth, and may also provide a framework for considering the potential trajectories of life-planet systems elsewhere