198 research outputs found

    Optimal Compensation for Temporal Uncertainty in Movement Planning

    Get PDF
    Motor control requires the generation of a precise temporal sequence of control signals sent to the skeletal musculature. We describe an experiment that, for good performance, requires human subjects to plan movements taking into account uncertainty in their movement duration and the increase in that uncertainty with increasing movement duration. We do this by rewarding movements performed within a specified time window, and penalizing slower movements in some conditions and faster movements in others. Our results indicate that subjects compensated for their natural duration-dependent temporal uncertainty as well as an overall increase in temporal uncertainty that was imposed experimentally. Their compensation for temporal uncertainty, both the natural duration-dependent and imposed overall components, was nearly optimal in the sense of maximizing expected gain in the task. The motor system is able to model its temporal uncertainty and compensate for that uncertainty so as to optimize the consequences of movement

    Neuromuscular training to enhance sensorimotor and functional deficits in subjects with chronic ankle instability: A systematic review and best evidence synthesis

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To summarise the available evidence for the efficacy of neuromuscular training in enhancing sensorimotor and functional deficits in subjects with chronic ankle instability (CAI).</p> <p>Design</p> <p>Systematic review with best evidence synthesis.</p> <p>Data Sources</p> <p>An electronic search was conducted through December 2009, limited to studies published in the English language, using the Pubmed, CINAHL, Embase, and SPORTDiscus databases. Reference screening of all included articles was also undertaken.</p> <p>Methods</p> <p>Studies were selected if the design was a RCT, quasi RCT, or a CCT; the patients were adolescents or adults with confirmed CAI; and one of the treatment options consisted of a neuromuscular training programme. The primary investigator independently assessed the risk of study bias and extracted relevant data. Due to clinical heterogeneity, data was analysed using a best-evidence synthesis.</p> <p>Results</p> <p>Fourteen studies were included in the review. Meta-analysis with statistical pooling of data was not possible, as the studies were considered too heterogeneous. Instead a best evidence synthesis was undertaken. There is limited to moderate evidence to support improvements in dynamic postural stability, and patient perceived functional stability through neuromuscular training in subjects with CAI. There is limited evidence of effectiveness for neuromuscular training for improving static postural stability, active and passive joint position sense (JPS), isometric strength, muscle onset latencies, shank/rearfoot coupling, and a reduction in injury recurrence rates. There is limited evidence of no effectiveness for improvements in muscle fatigue following neuromuscular intervention.</p> <p>Conclusion</p> <p>There is limited to moderate evidence of effectiveness in favour of neuromuscular training for various measures of static and dynamic postural stability, active and passive JPS, isometric strength, muscle onset latencies, shank/rearfoot coupling and injury recurrence rates. Strong evidence of effectiveness was lacking for all outcome measures. All but one of the studies included in the review were deemed to have a high risk of bias, and most studies were lacking sufficient power. Therefore, in future we recommend conducting higher quality RCTs using appropriate outcomes to assess for the effectiveness of neuromuscular training in overcoming sensorimotor deficits in subjects with CAI.</p

    A Compact Representation of Drawing Movements with Sequences of Parabolic Primitives

    Get PDF
    Some studies suggest that complex arm movements in humans and monkeys may optimize several objective functions, while others claim that arm movements satisfy geometric constraints and are composed of elementary components. However, the ability to unify different constraints has remained an open question. The criterion for a maximally smooth (minimizing jerk) motion is satisfied for parabolic trajectories having constant equi-affine speed, which thus comply with the geometric constraint known as the two-thirds power law. Here we empirically test the hypothesis that parabolic segments provide a compact representation of spontaneous drawing movements. Monkey scribblings performed during a period of practice were recorded. Practiced hand paths could be approximated well by relatively long parabolic segments. Following practice, the orientations and spatial locations of the fitted parabolic segments could be drawn from only 2–4 clusters, and there was less discrepancy between the fitted parabolic segments and the executed paths. This enabled us to show that well-practiced spontaneous scribbling movements can be represented as sequences (“words”) of a small number of elementary parabolic primitives (“letters”). A movement primitive can be defined as a movement entity that cannot be intentionally stopped before its completion. We found that in a well-trained monkey a movement was usually decelerated after receiving a reward, but it stopped only after the completion of a sequence composed of several parabolic segments. Piece-wise parabolic segments can be generated by applying affine geometric transformations to a single parabolic template. Thus, complex movements might be constructed by applying sequences of suitable geometric transformations to a few templates. Our findings therefore suggest that the motor system aims at achieving more parsimonious internal representations through practice, that parabolas serve as geometric primitives and that non-Euclidean variables are employed in internal movement representations (due to the special role of parabolas in equi-affine geometry)

    A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae.

    Get PDF
    Gene drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years. We describe CRISPR-Cas9 endonuclease constructs that function as gene drive systems in Anopheles gambiae, the main vector for malaria. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female-sterility phenotype upon disruption, and inserted into each locus CRISPR-Cas9 gene drive constructs designed to target and edit each gene. For each targeted locus we observed a strong gene drive at the molecular level, with transmission rates to progeny of 91.4 to 99.6%. Population modeling and cage experiments indicate that a CRISPR-Cas9 construct targeting one of these loci, AGAP007280, meets the minimum requirement for a gene drive targeting female reproduction in an insect population. These findings could expedite the development of gene drives to suppress mosquito populations to levels that do not support malaria transmission

    When What's Left Is Right: Visuomotor Transformations in an Aged Population

    Get PDF
    Background: There has been little consensus as to whether age-related visuomotor adaptation effects are readily observable. Some studies have found slower adaptation, and/or reduced overall levels. In contrast, other methodologically similar studies have found no such evidence of aging effects on visuomotor adaptation. A crucial early step in successful adaptation is the ability to perform the necessary transformation to complete the task at hand. The present study describes the use of a viewing window paradigm to examine the effects of aging in a visuomotor transformation task. Methods: Two groups of participants, a young adult control group (age range 18–33 years old, mean age = 22) and an older adult group (age range 62–74, mean age = 68) completed a viewing window task that was controlled by the user via a computer touchscreen. Four visuomotor ‘‘flip’ ’ conditions were created by varying the relationship between the participant’s movement, and the resultant on-screen movement of the viewing window: 1) No flip 2) X-Axis and Y-axis body movements resulted in the opposite direction of movement of the viewing window. In each of the 3) Flip-X and 4) Flip-Y conditions, the solitary X- or Y-axes were reversed. Response times and movement of the window were recorded. Conclusions: Older participants demonstrated impairments in performing a required visuomotor transformation, as evidenced by more complex scanning patterns and longer scanning times when compared to younger control participants. These results provide additional evidence that the mechanisms involved in visuomotor transformation are negatively affected by age

    fMRI Supports the Sensorimotor Theory of Motor Resonance

    Get PDF
    The neural mechanisms mediating the activation of the motor system during action observation, also known as motor resonance, are of major interest to the field of motor control. It has been proposed that motor resonance develops in infants through Hebbian plasticity of pathways connecting sensory and motor regions that fire simultaneously during imitation or self movement observation. A fundamental problem when testing this theory in adults is that most experimental paradigms involve actions that have been overpracticed throughout life. Here, we directly tested the sensorimotor theory of motor resonance by creating new visuomotor representations using abstract stimuli (motor symbols) and identifying the neural networks recruited through fMRI. We predicted that the network recruited during action observation and execution would overlap with that recruited during observation of new motor symbols. Our results indicate that a network consisting of premotor and posterior parietal cortex, the supplementary motor area, the inferior frontal gyrus and cerebellum was activated both by new motor symbols and by direct observation of the corresponding action. This tight spatial overlap underscores the importance of sensorimotor learning for motor resonance and further indicates that the physical characteristics of the perceived stimulus are irrelevant to the evoked response in the observer

    Effects of Fusion between Tactile and Proprioceptive Inputs on Tactile Perception

    Get PDF
    Tactile perception is typically considered the result of cortical interpretation of afferent signals from a network of mechanical sensors underneath the skin. Yet, tactile illusion studies suggest that tactile perception can be elicited without afferent signals from mechanoceptors. Therefore, the extent that tactile perception arises from isomorphic mapping of tactile afferents onto the somatosensory cortex remains controversial. We tested whether isomorphic mapping of tactile afferent fibers onto the cortex leads directly to tactile perception by examining whether it is independent from proprioceptive input by evaluating the impact of different hand postures on the perception of a tactile illusion across fingertips. Using the Cutaneous Rabbit Effect, a well studied illusion evoking the perception that a stimulus occurs at a location where none has been delivered, we found that hand posture has a significant effect on the perception of the illusion across the fingertips. This finding emphasizes that tactile perception arises from integration of perceived mechanical and proprioceptive input and not purely from tactile interaction with the external environment

    Return to sport decisions after an acute lateral ankle sprain injury : introducing the PAASS framework - an international multidisciplinary consensus

    Get PDF
    Background Despite being the most commonly incurred sports injury with a high recurrence rate, there are no guidelines to inform return to sport (RTS) decisions following acute lateral ankle sprain injuries. We aimed to develop a list of assessment items to address this gap. Methods We used a three-round Delphi survey approach to develop consensus of opinion among 155 globally diverse health professionals working in elite field or court sports. This involved surveys that were structured in question format with both closed-response and open-response options. We asked panellists to indicate their agreement about whether or not assessment items should support the RTS decision after an acute lateral ankle sprain injury. The second and third round surveys included quantitative and qualitative feedback from the previous round. We defined a priori consensus being reached at >70% agree or disagree responses. Results Sixteen assessment items reached consensus to be included in the RTS decision after an acute lateral ankle sprain injury. They were mapped to five domains with 98% panellist agreement-PAASS: ain (during sport participation and over the last 24 hours), nkle impairments (range of motion; muscle strength, endurance and power), athlete perception (perceived ankle confidence/reassurance and stability; psychological readiness), ensorimotor control (proprioception; dynamic postural control/balance), port/functional performance (hopping, jumping and agility; sport-specific drills; ability to complete a full training session). Conclusion Expert opinion indicated that pain severity, ankle impairments, sensorimotor control, athlete perception/readiness and sport/functional performance should be assessed to inform the RTS decision following an acute lateral ankle sprain injury. Trial registration number ACTRN12619000522112. [Abstract copyright: © Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.
    corecore