27 research outputs found

    Abnormalities of White Matter Microstructure in Unmedicated Obsessive-Compulsive Disorder and Changes after Medication

    Get PDF
    BACKGROUND: Abnormalities of myelin integrity have been reported in obsessive-compulsive disorder (OCD) using multi-parameter maps of diffusion tensor imaging (DTI). However, it was still unknown to what degree these abnormalities might be affected by pharmacological treatment. OBJECTIVE: To investigate whether the abnormalities of white matter microstructure including myelin integrity exist in OCD and whether they are affected by medication. METHODOLOGY AND PRINCIPAL FINDINGS: Parameter maps of DTI, including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD), were acquired from 27 unmedicated OCD patients (including 13 drug-naΓ―ve individuals) and 23 healthy controls. Voxel-based analysis was then performed to detect regions with significant group difference. We compared the DTI-derived parameters of 15 patients before and after 12-week Selective Serotonin Reuptake Inhibitor (SSRI) therapies. Significant differences of DTI-derived parameters were observed between OCD and healthy groups in multiple structures, mainly within the fronto-striato-thalamo-cortical loop. An increased RD in combination with no change in AD among OCD patients was found in the left medial superior frontal gyrus, temporo-parietal lobe, occipital lobe, striatum, insula and right midbrain. There was no statistical difference in DTI-derived parameters between drug-naive and previously medicated OCD patients. After being medicated, OCD patients showed a reduction in RD of the left striatum and right midbrain, and in MD of the right midbrain. CONCLUSION: Our preliminary findings suggest that abnormalities of white matter microstructure, particularly in terms of myelin integrity, are primarily located within the fronto-striato-thalamo-cortical circuit of individuals with OCD. Some abnormalities may be partly reversed by SSRI treatment

    Differential Stress-Induced Neuronal Activation Patterns in Mouse Lines Selectively Bred for High, Normal or Low Anxiety

    Get PDF
    There is evidence for a disturbed perception and processing of emotional information in pathological anxiety. Using a rat model of trait anxiety generated by selective breeding, we previously revealed differences in challenge-induced neuronal activation in fear/anxiety-related brain areas between high (HAB) and low (LAB) anxiety rats. To confirm whether findings generalize to other species, we used the corresponding HAB/LAB mouse model and investigated c-Fos responses to elevated open arm exposure. Moreover, for the first time we included normal anxiety mice (NAB) for comparison. The results confirm that HAB mice show hyperanxious behavior compared to their LAB counterparts, with NAB mice displaying an intermediate anxiety phenotype. Open arm challenge revealed altered c-Fos response in prefrontal-cortical, limbic and hypothalamic areas in HAB mice as compared to LAB mice, and this was similar to the differences observed previously in the HAB/LAB rat lines. In mice, however, additional differential c-Fos response was observed in subregions of the amygdala, hypothalamus, nucleus accumbens, midbrain and pons. Most of these differences were also seen between HAB and NAB mice, indicating that it is predominately the HAB line showing altered neuronal processing. Hypothalamic hypoactivation detected in LAB versus NAB mice may be associated with their low-anxiety/high-novelty-seeking phenotype. The detection of similarly disturbed activation patterns in a key set of anxiety-related brain areas in two independent models reflecting psychopathological states of trait anxiety confirms the notion that the altered brain activation in HAB animals is indeed characteristic of enhanced (pathological) anxiety, providing information for potential targets of therapeutic intervention

    Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes

    No full text
    © 2016 Macmillan Publishers Limited. Promoters are DNA sequences that have an essential role in controlling gene expression. While recent whole cancer genome analyses have identified numerous hotspots of somatic point mutations within promoters, many have not yet been shown to perturb gene expression or drive cancer development. As such, positive selection alone may not adequately explain the frequency of promoter point mutations in cancer genomes. Here we show that increased mutation density at gene promoters can be linked to promoter activity and differential nucleotide excision repair (NER). By analysing 1,161 human cancer genomes across 14 cancer types, we find evidence for increased local density of somatic point mutations within the centres of DNase I-hypersensitive sites (DHSs) in gene promoters. Mutated DHSs were strongly associated with transcription initiation activity, in which active promoters but not enhancers of equal DNase I hypersensitivity were most mutated relative to their flanking regions. Notably, analysis of genome-wide maps of NER shows that NER is impaired within the DHS centre of active gene promoters, while XPC-deficient skin cancers do not show increased promoter mutation density, pinpointing differential NER as the underlying cause of these mutation hotspots. Consistent with this finding, we observe that melanomas with an ultraviolet-induced DNA damage mutation signature show greatest enrichment of promoter mutations, whereas cancers that are not highly dependent on NER, such as colon cancer, show no sign of such enrichment. Taken together, our analysis has uncovered the presence of a previously unknown mechanism linking transcription initiation and NER as a major contributor of somatic point mutation hotspots at active gene promoters in cancer genomes.Link_to_subscribed_fulltex
    corecore