31 research outputs found

    Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching

    Get PDF
    Our rapidly warming climate is threatening coral reefs as thermal anomalies trigger mass coral bleaching events. Deep (or "mesophotic") coral reefs are hypothesised to act as major ecological refuges from mass bleaching, but empirical assessments are limited. We evaluated the potential of mesophotic reefs within the Great Barrier Reef (GBR) and adjacent Coral Sea to act as thermal refuges by characterising long-term temperature conditions and assessing impacts during the 2016 mass bleaching event. We found that summer upwelling initially provided thermal relief at upper mesophotic depths (40 m), but then subsided resulting in anomalously warm temperatures even at depth. Bleaching impacts on the deep reefs were severe (40% bleached and 6% dead colonies at 40 m) but significantly lower than at shallower depths (60-69% bleached and 8-12% dead at 5-25 m). While we confirm that deep reefs can offer refuge from thermal stress, we highlight important caveats in terms of the transient nature of the protection and their limited ability to provide broad ecological refuge.XL Catlin Seaview Survey; Waitt Foundation; XL Catlin Group; Underwater Earth; University of Queensland; ARC Discovery Early Career Researcher Award (DECRA) [DE160101433]; Portuguese Science and Technology Foundation (FCT) [SFRH/BPD/110285/2015]; Australian Research Council (ARC

    Comparison of coronary imaging between magnetic resonance imaging and electron beam computed tomography

    No full text
    In 27 patients, we compared the diagnostic value of magnetic resonance imaging (MRI) and electron beam computed tomography (EBCT) for noninvasive detection of coronary artery stenosis using conventional coronary angiography as the "gold standard." The overall sensitivity and specificity for EBCT to detect a 50% diameter stenosis were 70% and 95%, respectively. Therefore, we conclude that EBCT is slightly better than MRI in adequately visualizing and detecting a stenosis in the proximal and mid-coronary segments

    Spatial patterns in the distribution of benthic assemblages across a large depth gradient in the Coral Sea, Australia

    No full text
    The Queensland Plateau in the Coral Sea off north-eastern Australia supports numerous submerged and emergent reefs. Osprey Reef is an emergent reef at the northern tip of the plateau ~1500 m in elevation. Over such a large depth gradient, a wide range of abiotic factors (e.g. light, temperature, substratum etc.) are likely to influence benthic zonation. Despite the importance of understanding the biodiversity of Australia's Coral Sea, there is a lack of biological information on deep-water habitats below diving depths. Here we used a deep-water ROV transect to capture video, still photos and live samples over a depth range spanning 92 to 787 m at North Horn on Osprey Reef. Video analysis, combined with bathymetry data, was used to identify the zones of geomorphology and the benthic assemblages along the depth gradient. There were marked changes in the geomorphology and the substrate along this depth gradient which likely influence the associated benthos. Cluster analysis indicated five benthic assemblage groups, which showed clear zonation patterns and were generally predictable based on the depth and sedimentary environment. These results are the first quantitative observations to such depths and confirm that the waters of the Coral Sea support diverse benthic assemblages, ranging from shallow-water coral reefs to mesophotic coral ecosystems, to deep-water azooxanthellate corals and sponge gardens. The knowledge provided by our study can inform management plans for the Coral Sea Commonwealth Marine Reserve that incorporate the deeper reef habitats and help to minimise future damage to these marine ecosystems
    corecore