1,664 research outputs found

    Mercury in the human thyroid gland: Potential implications for thyroid cancer, autoimmune thyroiditis, and hypothyroidism

    Full text link
    Objective Mercury and other toxic metals have been suggested to be involved in thyroid disorders, but the distribution and prevalence of mercury in the human thyroid gland is not known. We therefore used two elemental bio-imaging techniques to look at the distribution of mercury and other toxic metals in the thyroid glands of people over a wide range of ages. Materials and methods Formalin-fixed paraffin-embedded thyroid tissue blocks were obtained from 115 people aged 1–104 years old, with varied clinicopathological conditions, who had thyroid samples removed during forensic/coronial autopsies. Seven-micron sections from these tissue blocks were used to detect intracellular inorganic mercury using autometallography. The presence of mercury was confirmed using laser ablation-inductively coupled plasma-mass spectrometry which can detect multiple elements. Results Mercury was found on autometallography in the thyroid follicular cells of 4% of people aged 1–29 years, 9% aged 30–59 years, and 38% aged 60–104 years. Laser ablation-inductively coupled plasma-mass spectrometry confirmed the presence of mercury in samples staining with autometallography, and detected cadmium, lead, iron, nickel and silver in selected samples. Conclusions The proportion of people with mercury in their thyroid follicular cells increases with age, until it is present in over one-third of people aged 60 years and over. Other toxic metals in thyroid cells could enhance mercury toxicity. Mercury can trigger genotoxicity, autoimmune reactions, and oxidative damage, which raises the possibility that mercury could play a role in the pathogenesis of thyroid cancers, autoimmune thyroiditis, and hypothyroidism

    The Prevalence of Inorganic Mercury in Human Kidneys Suggests a Role for Toxic Metals in Essential Hypertension

    Full text link
    The kidney plays a dominant role in the pathogenesis of essential hypertension, but the initial pathogenic events in the kidney leading to hypertension are not known. Exposure to mercury has been linked to many diseases including hypertension in epidemiological and experimental studies, so we studied the distribution and prevalence of mercury in the human kidney. Paraffin sections of kidneys were available from 129 people ranging in age from 1 to 104 years who had forensic/coronial autopsies. One individual had injected himself with metallic mercury, the other 128 were from varied clinicopathological backgrounds without known exposure to mercury. Sections were stained for inorganic mercury using autometallography. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used on six samples to confirm the presence of autometallography-detected mercury and to look for other toxic metals. In the 128 people without known mercury exposure, mercury was found in: (1) proximal tubules of the cortex and Henle thin loops of the medulla, in 25% of kidneys (and also in the man who injected himself with mercury), (2) proximal tubules only in 16% of kidneys, and (3) Henle thin loops only in 23% of kidneys. The age-related proportion of people who had any mercury in their kidney was 0% at 1–20 years, 66% at 21–40 years, 77% at 41–60 years, 84% at 61–80 years, and 64% at 81–104 years. LA-ICP-MS confirmed the presence of mercury in samples staining with autometallography and showed cadmium, lead, iron, nickel, and silver in some kidneys. In conclusion, mercury is found commonly in the adult human kidney, where it appears to accumulate in proximal tubules and Henle thin loops until an advanced age. Dysfunctions of both these cortical and medullary regions have been implicated in the pathogenesis of essential hypertension, so these findings suggest that further studies of the effects of mercury on blood pressure are warranted

    USING MONTE CARLO SIMULATIONS TO ACHIEVE THE BEST RESPONSE FROM NITROGEN ON GRAZED PASTURE UNDER A LEGISLATED NITROGEN CAP IN NEW ZEALAND: A REVIEW

    Get PDF
    (c) The Author/sPastoral and crop farming systems have traditionally used the application of nitrogen (N) to achieve an optimal economic production response. This nitrogen response is estimated from an exponential function that approaches an as ymptote, which is typical of most fertilizer response curves. The optimal economic N response is often achieved when appli cation rates are greater than plant utilization rates, often resulting in leaching, nitrogen run-off, and volatilization of ni trogenous compounds. These losses can have an impact on freshwater quality and contribute to greenhouse gas (GHG) emissions. In New Zealand, urine from N-fertilized pasture grazed by dairy cattle has been shown to be the most problematic source of N losses. As part of New Zealand’s National Environmental Standards (NES), a synthetic N cap of 190 kgN ha-1yr-1 on grazed pasture and crops has been implemented to reduce nutrient enrichment of fresh water. This study reviewed the use of multiple split applications of N to improve N fertilizer use efficiency and pasture response and used Monte Carlo simulations to demonstrate improved response to split N applications rather than a single optimal application based on economic response. In addition, spreading accuracy also became less important as all the low-application variation occurred along the steepest part of the response curve where this variation results in added yield.fals

    Firewood, food and niche construction: the potential role of Mesolithic hunter-gatherers in actively structuring Scotland's woodlands

    Get PDF
    Over the past few decades the potential role of Mesolithic hunter–gatherers in actively constructing their own niches, through the management of wild plants, has frequently been discussed. It is probable that Mesolithic hunter–gatherers systematically exploited specific woodland resources for food and fuel and influenced the ‘natural’ abundance or distribution of particular species within Mesolithic environments. Though there has been considerable discussion of the pollen evidence for potential small-scale human-woodland manipulation in Mesolithic Scotland, the archaeobotanical evidence for anthropogenic firewood and food selection has not been discussed in this context. This paper assesses the evidence for the active role of Mesolithic hunter–gatherer communities in systematically exploiting and managing woodlands for food and fuel in Scotland. While taphonomic factors may have impacted on the frequency of specific species in archaeobotanical assemblages, it is suggested that hunter–gatherers in Mesolithic Scotland were systematically using woodland plants, and in particular hazel and oak, for food and fuel. It is argued that the pollen evidence for woodland management is equivocal, but hints at the role of hunter–gatherers in shaping the structure of their environments, through the maintenance or creation of woodland clearings for settlement or as part of vegetation management strategies. It is proposed that Mesolithic hunter–gatherers may have actively contributed to niche construction and that the systematic use of hazel and oak as a fuel may reflect the deliberate pruning of hazel trees to increase nut-yields and the inadvertent – or perhaps deliberate – coppicing of hazel and oak during greenwood collection

    Seeds, fruits and nuts in the Scottish Mesolithic

    Get PDF
    Over the past few decades, the potential importance of plants within European Mesolithic economies has frequently been discussed, but there has been little systematic consideration of the archaeobotanical evidence for Mesolithic plant consumption in Scotland. This paper assesses the use of plants in the Scottish Mesolithic economy using the archaeobotanical evidence from 48 sites. It is argued that plants were systematically, and, in some cases, intensively exploited in Mesolithic Scotland. Though plant remains were extremely sparse at most sites, it is suggested that uneven archaeological sampling and taphonomic factors, together with the relatively short duration of occupation of many sites, may be responsible for the restricted range and frequency of edible taxa in most assemblages

    Elemental analysis of aging human pituitary glands implicates mercury as a contributor to the somatopause

    Full text link
    Copyright © 2019 Pamphlett, Kum Jew, Doble and Bishop. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Background: Growth hormone levels often decline on aging, and this “somatopause” is associated with muscle and bone loss, visceral adiposity and impaired cardiovascular function. Mercury has been detected in human pituitary glands, so to see if mercury could play a part in the somatopause we measured the proportion of people at different ages who had mercury in their anterior pituitary cells. Materials and methods: Paraffin sections of pituitary glands taken at autopsy from 94 people between the ages of 2 and 99 years were stained for inorganic mercury using autometallography. Pituitary mercury content was classified as none, low (30% of cells) in increasing two-decade age groups. Autometallography combined with immunohistochemistry determined which hormone-producing cells contained mercury. Laser ablation-inductively coupled plasma-mass spectrometry was used to confirm the presence of mercury. Results: The proportion of people with low-content pituitary mercury remained between 33 and 42% at all ages. The proportion of people with high-content mercury increased with increasing age, from 0% of people in the 2-20 year group to a peak of 50% of people in the 61-80 years group, followed by a fall to 35% of people in the 81-99 years group. Mercury, when present, was found always in somatotrophs, occasionally in corticotrophs, rarely in thyrotrophs and gonadotrophs, and never in lactotrophs. Laser ablation-inductively coupled plasma-mass spectrometry detected mercury in regions of pituitaries that stained with autometallography. Conclusions: The proportion of people with mercury in their anterior pituitary cells, mostly somatotrophs, increases with aging, suggesting that mercury toxicity could be one factor contributing to the decline in growth hormone levels found in advancing age

    Age-related accumulation of toxic metals in the human locus ceruleus

    Full text link
    © 2018 Pamphlett et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Damage to the locus ceruleus has been implicated in the pathogenesis of a number of neurological conditions. Locus ceruleus neurons accumulate toxic metals such as mercury selectively, however, the presence of toxic metals in locus ceruleus neurons of people of different ages, and with a variety of disorders, is not known. To demonstrate at what age toxic metals are first detectable in the locus ceruleus, and to evaluate whether their presence is more common in certain clinicopathological conditions, we looked for these metals in 228 locus ceruleus samples. Samples were taken at coronial autopsies from individuals with a wide range of ages, pre-existing conditions and causes of death. Paraffin sections of pons containing the locus ceruleus were stained with silver nitrate autometallography, which indicates inorganic mercury, silver and bismuth within cells (termed autometallography-detected toxic metals, or AMG™). No locus ceruleus AMG neurons were seen in 38 individuals aged under 20 years. 47% of the 190 adults (ie, aged 20 years and over) had AMG locus ceruleus neurons. The proportion of adults with locus ceruleus AMG neurons increased during aging, except for a decreased proportion in the 90-plus years age group. No differences were found in the proportions of locus ceruleus AMG neurons between groups with different neurological, psychiatric, or other clinicopathological conditions, or among various causes of death. Elemental analysis with laser ablation-inductively coupled plasma-mass spectrometry was used to cross-validate the metals detected by AMG, by looking for silver, gold, bismuth, cadmium, chromium, iron, mercury, nickel, and lead in the locus ceruleus of ten individuals. This confirmed the presence of mercury in locus ceruleus samples containing AMG neurons, and showed cadmium, silver, lead, iron, and nickel in the locus ceruleus of some individuals. In conclusion, toxic metals stained by AMG (most likely inorganic mercury) appear in locus ceruleus neurons in early adult life. About half of adults in this study had locus ceruleus neurons containing inorganic mercury, and elemental analysis found a range of other toxic metals in the locus ceruleus. Locus ceruleus inorganic mercury increased during aging, except for a decrease in advanced age, but was not found more often in any single clinicopathological condition or cause of death

    Mercury in Pancreatic Cells of People with and without Pancreatic Cancer.

    Get PDF
    Toxic metals have been implicated in the pathogenesis of pancreatic cancer. Human exposure to mercury is widespread, but it is not known how often mercury is present in the human pancreas and which cells might contain mercury. We therefore aimed to determine, in people with and without pancreatic cancer, the distribution and prevalence of mercury in pancreatic cells. Paraffin-embedded sections of normal pancreatic tissue were obtained from pancreatectomy samples of 45 people who had pancreatic adenocarcinoma, and from autopsy samples of 38 people without pancreatic cancer. Mercury was identified using two methods of elemental bio-imaging: (1) With autometallography, inorganic mercury was seen in islet cells in 14 of 30 males (47%) with pancreatic cancer compared to two of 17 males (12%) without pancreatic cancer (p = 0.024), and in 10 of 15 females (67%) with pancreatic cancer compared to four of 22 females (19%) without pancreatic cancer (p = 0.006). Autometallographic mercury was present in acinar cells in 24% and in periductal cells in 11% of people with pancreatic cancer, but not in those without pancreatic cancer. (2) Laser ablation-inductively coupled plasma-mass spectrometry confirmed the presence of mercury in islets that stained with autometallography and detected cadmium, lead, chromium, iron, nickel and aluminium in some samples. In conclusion, the genotoxic metal mercury is found in normal pancreatic cells in more people with, than without, pancreatic cancer. These findings support the hypothesis that toxic metals such as mercury contribute to the pathogenesis of pancreatic cancer

    Age modulates the injury-induced metallomic profile in the brain

    Full text link
    © 2017 The Royal Society of Chemistry. The biological transition metals iron (Fe), copper (Cu) and zinc (Zn) are thought to contribute to the neuronal pathologies that occur following traumatic brain injury (TBI), and indeed our previously published work in young (3 month-old) mice clearly demonstrates a significant spatiotemporal modulation of metals following TBI. Of note, however, is the literature observation that there is both an apparent detrimental effect of aging on TBI outcomes and an alteration in metals and their various transporters with normal advancing age. Therefore, to determine whether there was an interaction between aging, metals and TBI, we have utilised laser ablation-inductively coupled plasma-mass spectrometry to examine the spatial and temporal distribution of Fe, Zn and Cu following an acute controlled cortical impact brain injury in aged (24 months) rodents. The relative abundance of metals in corresponding regions within the ipsilateral and contralateral hemispheres as well as the hippocampus was assessed. Substantial region and time point specific alterations in Fe, Zn and Cu were identified immediately and up to 28 days post-TBI. The data from this follow-up study has also been compared to our previous data from young animals, and aged mice exhibit an appreciably enhanced and persistent elevation of all metals in every region surveyed, with individual metal disparities at various time points observed post-injury. This may potentially contribute to the acceleration in the onset of cognitive decline and neurological disease that has been observed in the aged population following head trauma

    Elemental imaging shows mercury in cells of the human lateral and medial geniculate nuclei.

    Full text link
    OBJECTIVE:Interference with the transmission of sensory signals along visual and auditory pathways has been implicated in the pathogenesis of hallucinations. The relay centres for vision (the lateral geniculate nucleus) and hearing (the medial geniculate nucleus) appear to be susceptible to the uptake of circulating mercury. We therefore investigated the distribution of mercury in cells of both these geniculate nuclei. MATERIALS AND METHODS:Paraffin-embedded tissue sections containing the lateral geniculate nucleus were obtained from 50 adults (age range 20-104 years) who at autopsy had a variety of clinicopathological conditions, including neurological and psychiatric disorders. The medial geniculate nucleus was present in seven sections. Sections were stained for mercury using autometallography. Laser ablation-inductively coupled plasma-mass spectrometry was used to confirm the presence of mercury. RESULTS:Ten people had mercury in cells of the lateral geniculate nucleus, and in the medial geniculate nucleus of three of these. Medical diagnoses in these individuals were: none (3), Parkinson disease (3), and one each of depression, bipolar disorder, multiple sclerosis, and mercury self-injection. Mercury was distributed in different groups of geniculate capillary endothelial cells, neurons, oligodendrocytes, and astrocytes. Mass spectrometry confirmed the presence of mercury. CONCLUSION:Mercury is present in different combinations of cell types in the lateral and medial geniculate nuclei in a proportion of people from varied backgrounds. This raises the possibility that mercury-induced impairment of the function of the geniculate nuclei could play a part in the genesis of visual and auditory hallucinations. Although these findings do not provide a direct link between mercury in geniculate cells and hallucinations, they suggest that further investigations into the possibility of toxicant-induced hallucinations are warranted
    corecore