965 research outputs found

    Thermal nature of de Sitter spacetime and spontaneous excitation of atoms

    Full text link
    We consider, in de Sitter spacetime, both freely falling and static two-level atoms in interaction with a conformally coupled massless scalar field in the de Sitter-invariant vacuum, and separately calculate the contributions of vacuum fluctuations and radiation reaction to the atom's spontaneous excitation rate. We find that spontaneous excitations occur even for the freely falling atom as if there is a thermal bath of radiation at the Gibbons-Hawking temperature and we thus recover, in a different physical context, the results of Gibbons and Hawking that reveals the thermal nature of de Sitter spacetime. Similarly, for the case of the static atom, our results show that the atom also perceives a thermal bath which now arises as a result of the intrinsic thermal nature of de Sitter spacetime and the Unruh effect associated with the inherent acceleration of the atom.Comment: 11 page

    Group expansions for impurities in superconductors

    Full text link
    A new method is proposed for practical calculation of the effective interaction between impurity scatterers in superconductors, based on algebraic properties of related Nambu matrices for Green functions. In particular, we show that the density of states within the s-wave gap can have a non-zero contribution (impossible either in Born and in T-matrix approximation) from non-magnetic impurities with concentration c1c \ll 1, beginning from c3\sim c^{3} order.Comment: 5 pages, 1 figur

    Effects of spin-elastic interactions in frustrated Heisenberg antiferromagnets

    Full text link
    The Heisenberg antiferromagnet on a compressible triangular lattice in the spin- wave approximation is considered. It is shown that the interaction between quantum fluctuations and elastic degrees of freedom stabilizes the low symmetric L-phase with a collinear Neel magnetic ordering. Multi-stability in the dependence of the on-site magnetization on an unaxial pressure is found.Comment: Revtex, 4 pages, 2 eps figure

    Pair production of neutralinos via gluon-gluon collisions

    Get PDF
    The production of a neutralino pair via gluon-gluon fusion is studied in the minimal supersymmetric model(MSSM) at proton-proton colliders. The numerical analysis of their production rates are carried out in the mSUGRA scenario. The results show that this cross section may reach about 80 femto barn for χ~10χ~20\tilde{\chi}^{0}_{1}\tilde{\chi}^{0}_{2} pair production and 23 femto barn for χ~20χ~20\tilde{\chi}^{0}_{2}\tilde{\chi}^{0}_{2} pair production with suitable input parameters at the future LHC collider. It shows that this loop mediated process can be competitive with the quark-antiquark annihilation process at the LHC.Comment: LaTex file, l4 pages, 5 EPS figure

    Effect of Pivot Point on Aerodynamic Force and Vortical Structure of Pitching Flat Plate Wings

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106512/1/AIAA2013-792.pd

    Entanglement between a qubit and the environment in the spin-boson model

    Get PDF
    The quantitative description of the quantum entanglement between a qubit and its environment is considered. Specifically, for the ground state of the spin-boson model, the entropy of entanglement of the spin is calculated as a function of α\alpha, the strength of the ohmic coupling to the environment, and ϵ\epsilon, the level asymmetry. This is done by a numerical renormalization group treatment of the related anisotropic Kondo model. For ϵ=0\epsilon=0, the entanglement increases monotonically with α\alpha, until it becomes maximal for αlim1\alpha \lim 1^-. For fixed ϵ>0\epsilon>0, the entanglement is a maximum as a function of α\alpha for a value, α=αM<1\alpha = \alpha_M < 1.Comment: 4 pages, 3 figures. Shortened version restricted to groundstate entanglemen

    Singularities in the Fermi liquid description of a partially filled Landau level and the energy gaps of fractional quantum Hall states

    Full text link
    We consider a two dimensional electron system in an external magnetic field at and near an even denominator Landau level filling fraction. Using a fermionic Chern--Simons approach we study the description of the system's low energy excitations within an extension of Landau's Fermi liquid theory. We calculate perturbatively the effective mass and the quasi--particle interaction function characterizing this description. We find that at an even denominator filling fraction the fermion's effective mass diverges logarithmically at the Fermi level, and argue that this divergence allows for an {\it exact} calculation of the energy gaps of the fractional quantized Hall states asymptotically approaching these filling fractions. We find that the quasi--particle interaction function approaches a delta function. This singular behavior leads to a cancelation of the diverging effective mass from the long wavelength low frequency linear response functions at even denominator filling fractions.Comment: 46 pages, RevTeX, 5 figures included in a uuencoded postscript file. Minor revisions relative to the original version. The paper will be published in the Physical Review B, and can be retrieved from the World Wide Web, in http://cmtw.harvard.edu/~ster

    Higgs Signal for h to aa at Hadron Colliders

    Full text link
    We assess the prospect of observing a neutral Higgs boson at hadron colliders in its decay to two spin-zero states, a, for a Higgs mass of 90-130 GeV, when produced in association with a W or Z boson. Such a decay is allowed in extensions of the MSSM with CP-violating interactions and in the NMSSM, and can dominate Higgs boson final states, thereby evading the LEP constraints on standard Higgs boson production. The light spin-zero state decays primarily via a to bb and tau+tau-, so this signal channel retains features distinct from the main backgrounds. Our study shows that at the Tevatron, there may be potential to observe a few events in the bb tau+tau- or bbbb channels with relatively small background, although this observation would be statistically limited. At the LHC, the background problem is more severe, but with cross sections and integrated luminosities orders of magnitude larger than at the Tevatron, the observation of a Higgs boson in this decay mode would be possible. The channel h to aa to bbbb would provide a large statistical significance, with a signal-to-background ratio on the order of 1:2. In these searches, the main challenge would be to retain the adequate tagging efficiency of b's and tau's in the low p_T region.Comment: Version to be published in JHEP. 20 pages, 5 figure

    Strain dependence of the acoustic properties of amorphous metals below 1K: Evidence for the interaction between tunneling states

    Full text link
    We have conducted a thorough study of the acoustic properties between 10^-4 and 1 Kelvin for the amorphous metal Zr_x Cu_1-x (x=0.3 and x=0.4), by measuring the relative change of sound velocity dv/v and internal friction Q^-1 as a function of temperature and also of the applied strain, in both superconducting and normal state. We have found that when plotted versus the ratio of strain energy to thermal energy, all measurements display the same behavior: a crossover from a linear regime of ``independent'' tunneling systems at very low strains and/or high enough temperatures to a nonlinear regime where dv/v and Q^-1 depend on applied strain and the tunneling systems cannot be considered as independent.Comment: 4 pages, 4 figures (submitted to PRL

    Qubit Disentanglement and Decoherence via Dephasing

    Full text link
    We consider whether quantum coherence in the form of mutual entanglement between a pair of qubits is susceptible to decay that may be more rapid than the decay of the coherence of either qubit individually. An instance of potential importance for solid state quantum computing arises if embedded qubits (spins, quantum dots, Cooper pair boxes, etc.) are exposed to global and local noise at the same time. Here we allow separate phase-noisy channels to affect local and non-local measures of system coherence. We find that the time for decay of the qubit entanglement can be significantly shorter than the time for local dephasing of the individual qubits.Comment: REVTeX, 9 pages, 1 figure, v2 with minor changes, reference adde
    corecore