456 research outputs found

    Mean field approach to antiferromagnetic domains in the doped Hubbard model

    Full text link
    We present a restricted path integral approach to the 2D and 3D repulsive Hubbard model. In this approach the partition function is approximated by restricting the summation over all states to a (small) subclass which is chosen such as to well represent the important states. This procedure generalizes mean field theory and can be systematically improved by including more states or fluctuations. We analyze in detail the simplest of these approximations which corresponds to summing over states with local antiferromagnetic (AF) order. If in the states considered the AF order changes sufficiently little in space and time, the path integral becomes a finite dimensional integral for which the saddle point evaluation is exact. This leads to generalized mean field equations allowing for the possibility of more than one relevant saddle points. In a big parameter regime (both in temperature and filling), we find that this integral has {\em two} relevant saddle points, one corresponding to finite AF order and the other without. These degenerate saddle points describe a phase of AF ordered fermions coexisting with free, metallic fermions. We argue that this mixed phase is a simple mean field description of a variety of possible inhomogeneous states, appropriate on length scales where these states appear homogeneous. We sketch systematic refinements of this approximation which can give more detailed descriptions of the system.Comment: 14 pages RevTex, 6 postscript figures included using eps

    Quantum disorder in the two-dimensional pyrochlore Heisenberg antiferromagnet

    Full text link
    We present the results of an exact diagonalization study of the spin-1/2 Heisenberg antiferromagnet on a two-dimensional version of the pyrochlore lattice, also known as the square lattice with crossings or the checkerboard lattice. Examining the low energy spectra for systems of up to 24 spins, we find that all clusters studied have non-degenerate ground states with total spin zero, and big energy gaps to states with higher total spin. We also find a large number of non-magnetic excitations at energies within this spin gap. Spin-spin and spin-Peierls correlation functions appear to be short-ranged, and we suggest that the ground state is a spin liquid.Comment: 7 pages, 11 figures, RevTeX minor changes made, Figure 6 correcte

    Critical exponents of a multicomponent anisotropic t-J model in one dimension

    Full text link
    A recently presented anisotropic generalization of the multicomponent supersymmetric t−Jt-J model in one dimension is investigated. This model of fermions with general spin-SS is solved by Bethe ansatz for the ground state and the low-lying excitations. Due to the anisotropy of the interaction the model possesses 2S2S massive modes and one single gapless excitation. The physical properties indicate the existence of Cooper-type multiplets of 2S+12S+1 fermions with finite binding energy. The critical behaviour is described by a c=1c=1 conformal field theory with continuously varying exponents depending on the particle density. There are two distinct regimes of the phase diagram with dominating density-density and multiplet-multiplet correlations, respectively. The effective mass of the charge carriers is calculated. In comparison to the limit of isotropic interactions the mass is strongly enhanced in general.Comment: 10 pages, 3 Postscript figures appended as uuencoded compressed tar-file to appear in Z. Phys. B, preprint Cologne-94-474

    A numerical study of multi-soliton configurations in a doped antiferromagnetic Mott insulator

    Full text link
    We evaluate from first principles the self-consistent Hartree-Fock energies for multi-soliton configurations in a doped, spin-1/2, antiferromagnetic Mott insulator on a two-dimensional square lattice. We find that nearest-neighbor Coulomb repulsion stabilizes a regime of charged meron-antimeron vortex soliton pairs over a region of doping from 0.05 to 0.4 holes per site for intermediate coupling 3 < U/t <8. This stabilization is mediated through the generation of ``spin-flux'' in the mean-field antiferromagnetic (AFM) background. Holes cloaked by a meron-vortex in the spin-flux AFM background are charged bosons. Our static Hartree-Fock calculations provide an upper bound on the energy of a finite density of charged vortices. This upper bound is lower than the energy of the corresponding charged stripe configurations. A finite density of charge carrying vortices is shown to produce a large number of unoccupied electronic levels in the Mott-Hubbard charge transfer gap. These levels lead to significant band tailing and a broad mid-infrared band in the optical absorption spectrum as observed experimentally. At very low doping (below 0.05) the doping charges create extremely tightly bound meron-antimeron pairs or even isolated conventional spin-polarons, whereas for very high doping (above 0.4) the spin background itself becomes unstable to formation of a conventional Fermi liquid and the spin-flux mean-field is energetically unfavorable. Our results point to the predominance of a quantum liquid of charged, bosonic, vortex solitons at intermediate coupling and intermediate doping concentrations.Comment: 12 pages, 25 figures; added references, modified/eliminated some figure

    High-Intensity and High-Brightness Source of Moderated Positrons Using a Brilliant gamma Beam

    Full text link
    Presently large efforts are conducted towards the development of highly brilliant gamma beams via Compton back scattering of photons from a high-brilliance electron beam, either on the basis of a normal-conducting electron linac or a (superconducting) Energy Recovery Linac (ERL). Particularly ERL's provide an extremely brilliant electron beam, thus enabling to generate highest-quality gamma beams. A 2.5 MeV gamma beam with an envisaged intensity of 10^15 s^-1, as ultimately envisaged for an ERL-based gamma-beam facility, narrow band width (10^-3), and extremely low emittance (10^-4 mm^2 mrad^2) offers the possibility to produce a high-intensity bright polarized positron beam. Pair production in a face-on irradiated W converter foil (200 micron thick, 10 mm long) would lead to the emission of 2 x 10^13 (fast) positrons per second, which is four orders of magnitude higher compared to strong radioactive ^22Na sources conventionally used in the laboratory.Using a stack of converter foils and subsequent positron moderation, a high-intensity low-energy beam of moderated positrons can be produced. Two different source setups are presented: a high-brightness positron beam with a diameter as low as 0.2 mm, and a high-intensity beam of 3 x 10^11 moderated positrons per second. Hence, profiting from an improved moderation efficiency, the envisaged positron intensity would exceed that of present high-intensity positron sources by a factor of 100.Comment: 9 pages, 3 figure

    Exact spectra, spin susceptibilities and order parameter of the quantum Heisenberg antiferromagnet on the triangular lattice

    Full text link
    Exact spectra of periodic samples are computed up to N=36 N=36 . Evidence of an extensive set of low lying levels, lower than the softest magnons, is exhibited. These low lying quantum states are degenerated in the thermodynamic limit; their symmetries and dynamics as well as their finite-size scaling are strong arguments in favor of N\'eel order. It is shown that the N\'eel order parameter agrees with first-order spin-wave calculations. A simple explanation of the low energy dynamics is given as well as the numerical determinations of the energies, order parameter and spin susceptibilities of the studied samples. It is shown how suitable boundary conditions, which do not frustrate N\'eel order, allow the study of samples with N=3p+1 N=3p+1 spins. A thorough study of these situations is done in parallel with the more conventional case N=3p N=3p .Comment: 36 pages, REVTeX 3.0, 13 figures available upon request, LPTL preprin

    Cardiac glycoside poisoning in sheep caused by Urginea physodes (Jacq.) Bak. and the isolated physodine A

    Get PDF
    Urginea physodes (Jacq.) Bak., a species closely related to or possibly synonymous with U. pusilla, is described and its distribution given. Four bufadienolides were isolated from U. physodes and the approximated LDâ‚…â‚€ and cumulative effect of some of them determined in guinea pigs. The most toxic one proved to be mildly cumulative. Typical signs of acute cardiac glycoside poisoning, involving the locomotory, gastro-intestinal, respiratory and cardiac systems, were seen in the field cases and/or were experimentally induced by the plant. Similar signs could also be induced by injecting the isolated bufadienolide, physodine A, to a sheep.The articles have been scanned in colour with a HP Scanjet 5590; 600dpi. Adobe Acrobat XI Pro was used to OCR the text and also for the merging and conversion to the final presentation PDF-format.lmchunu2014mn201

    An Exact Diagonalization Demonstration of Incommensurability and Rigid Band Filling for N Holes in the t-J Model

    Full text link
    We have calculated S(q) and the single particle distribution function for N holes in the t - J model on a non--square sqrt{8} X sqrt{32} 16--site lattice with periodic boundary conditions; we justify the use of this lattice in compariosn to those of having the full square symmetry of the bulk. This new cluster has a high density of vec k points along the diagonal of reciprocal space, viz. along k = (k,k). The results clearly demonstrate that when the single hole problem has a ground state with a system momentum of vec k = (pi/2,pi/2), the resulting ground state for N holes involves a shift of the peak of the system's structure factor away from the antiferromagnetic state. This shift effectively increases continuously with N. When the single hole problem has a ground state with a momentum that is not equal to k = (pi/2,pi/2), then the above--mentioned incommensurability for N holes is not found. The results for the incommensurate ground states can be understood in terms of rigid--band filling: the effective occupation of the single hole k = (pi/2,pi/2) states is demonstrated by the evaluation of the single particle momentum distribution function . Unlike many previous studies, we show that for the many hole ground state the occupied momentum states are indeed k = (+/- pi/2,+/- pi/2) states.Comment: Revtex 3.0; 23 pages, 1 table, and 13 figures, all include

    Determinant Representations of Correlation Functions for the Supersymmetric t-J Model

    Full text link
    Working in the FF-basis provided by the factorizing FF-matrix, the scalar products of Bethe states for the supersymmetric t-J model are represented by determinants. By means of these results, we obtain determinant representations of correlation functions for the model.Comment: Latex File, 41 pages, no figure; V2: minor typos corrected, V3: This version will appear in Commun. Math. Phy

    A microscopic model for d-wave charge carrier pairing and non-Fermi-liquid behavior in a purely repulsive 2D electron system

    Full text link
    We investigate a microscopic model for strongly correlated electrons with both on-site and nearest neighbor Coulomb repulsion on a 2D square lattice. This exhibits a state in which electrons undergo a ``somersault'' in their internal spin-space (spin-flux) as they traverse a closed loop in external coordinate space. When this spin-1/2 antiferromagnetic (AFM) insulator is doped, the ground state is a liquid of charged, bosonic meron-vortices, which for topological reasons are created in vortex-antivortex pairs. The magnetic exchange energy of the distorted AFM background leads to a logarithmic vortex-antivortex attraction which overcomes the direct Coulomb repulsion between holes localized on the vortex cores. This leads to the appearance of pre-formed charged pairs. We use the Configuration Interaction (CI) Method to study the quantum translational and rotational motion of various charged magnetic solitons and soliton pairs. The CI method systematically describes fluctuation and quantum tunneling corrections to the Hartree-Fock Approximation (HFA). We find that the lowest energy charged meron-antimeron pairs exhibit d-wave rotational symmetry, consistent with the symmetry of the cuprate superconducting order parameter. For a single hole in the 2D AFM plane, we find a precursor to spin-charge separation in which a conventional charged spin-polaron dissociates into a singly charged meron-antimeron pair. This model provides a unified microscopic basis for (i) non-Fermi-liquid transport properties, (ii) d-wave preformed charged carrier pairs, (iii) mid-infrared optical absorption, (iv) destruction of AFM long range order with doping and other magnetic properties, and (v) certain aspects of angled resolved photo-emission spectroscopy (ARPES).Comment: 14 pages, 17 figure
    • …
    corecore