18 research outputs found

    Response function analysis of excited-state kinetic energy functional constructed by splitting k-space

    Full text link
    Over the past decade, fundamentals of time independent density functional theory for excited state have been established. However, construction of the corresponding energy functionals for excited states remains a challenging problem. We have developed a method for constructing functionals for excited states by splitting k-space according to the occupation of orbitals. In this paper we first show the accuracy of kinetic energy functional thus obtained. We then perform a response function analysis of the kinetic energy functional proposed by us and show why method of splitting the k-space could be the method of choice for construction of energy functionals for excited states.Comment: 11 page

    A high performance grid-based algorithm for computing QTAIM properties

    No full text
    An improved version of our method for computing QTAIM [J.I. Rodríguez, A.M. Köster, P.W. Ayers, A. Santos-Valle, A. Vela, G. Merino, J. Comput. Chem. (2009), in press, doi:10.1002/jcc.21134] is presented. Vectorization and parallelization of the previous algorithm, together with molecular symmetry, make the present algorithm as much as two orders of magnitude faster than our original method. The present method scales linearly with both system size and the number of processors. The performance of the method is demonstrated by computing the QTAIM atomic properties of a series of carbon nanotubes. Our results show that the CPU time for a QTAIM property calculation is comparable to that of a SCF-single point calculation. The accuracy of the original method is also improved. © 2009 Elsevier B.V. All rights reserved
    corecore