12 research outputs found

    Repetitive ischemic injuries to the kidneys result in lymph node fibrosis and impaired healing

    Get PDF
    The contribution of the kidney-draining lymph node (KLN) to the pathogenesis of ischemia-reperfusion injury (IRI) of the kidney and its subsequent recovery has not been explored in depth. In addition, the mechanism by which repetitive IRI contributes to renal fibrosis remains poorly understood. Herein, we have found that IRI of the kidney is associated with expansion of high endothelial venules (HEVs) and activation of fibroblastic reticular cells (FRCs) in the KLN, as demonstrated by significant expansion in the extracellular matrix. The lymphotoxin \u3b1 signaling pathway mediates activation of FRCs, and chronic treatment with lymphotoxin \u3b2 receptor-immunoglobulin fusion protein (LT\u3b2r-Ig) resulted in marked alteration of the KLN as well as augmentation of renal fibrosis. Depletion of FRCs reduced T cell activation in the KLN and ameliorated renal injury in acute IRI. Repetitive renal IRI was associated with senescence of FRCs, fibrosis of the KLN, and renal scarring, which were ameliorated by FRC administration. Therefore, our study emphasizes the critical role of FRCs in both the initiation and repair phases of injury following IRI of the kidney

    Prompt Îł-ray spectroscopy of the neutron-rich 124Cd

    No full text
    Prompt Îł-ray spectroscopy of neutron-rich cadmium isotopes has been performed. The nuclei of interest have been populated via a 25-MeV, proton-induced fission of the 238U thick target and prompt Îł-rays measured using the multi-detector HPGe array JUROGAM II. New high-spin decays have been observed and placed in the level scheme using triple coincidence gates. The experimental results are compared to shell-model calculations and show good agreement

    Prompt gamma ray-spectroscopy of

    No full text
    Excited states in the nuclei 83As and 84,86Se have been studied via prompt Îł-ray spectroscopy. The nuclei were produced by the proton-induced fission of a 238U target, at the accelerator of the University of JyvĂ€skylĂ€. The JUROGAM-II array was used to detect prompt Îł-rays and a triple-Îł coincidence analysis performed. A comparison of the N = 50 nuclei with shell-model calculations reproduces the low-lying states in 83As and 84Se well. The inclusion of particle-hole excitations is necessary to correctly describe the states above ∌ 3.5 MeV

    Cell Therapy in Solid Organ Transplantation

    No full text

    Metabolomics and Systems Biology in Saccharomyces cerevisiae

    No full text

    Factors affecting the global distribution of Hydrilla verticillata

    No full text
    Hydrilla verticillata (Hydrocharitaceae) is a submerged freshwater flowering plant within the monotypic genus. Over the geological periods, fossils of this family and genus have shown distinct diversifications between warm and cool fluctuations with more adaptations occurring in warmer periods and suppressions during severely cold paleoclimate changes. Recently, H. verticillata has shown a wide range of adaptive plasticity, allowing successful proliferation into non-native regions, whilst also undergoing unexplained disappearance from its native localities, and this phenomenon has stimulated this inquiry. Against this somewhat complex background, particular interest for this investigation has been focussed on an understanding of which aspects of climate change have contributed towards global adaptations and distribution patterns of H. verticillata. Whilst it is recognised that some of these changes are natural, other aggravating impacts are due to anthropogenic influences. Identifying the appropriate combinations of these climatic factors (temperature, rainfall, photoperiod), in concert with environmental (water level, CO2, salinity, eutrophication), geographical (altitude, latitude) and other factors (UV-B) are necessary precursors for instituting appropriate management strategies. In this respect, control measures are needed in non-native regions and restoration of this plant in native habitats are essential for its ecologically balanced global distribution. © 2021 European Weed Research Societ
    corecore