5 research outputs found
Gravitational couplings of charged leptons in a medium
We calculate the leading order matter-induced corrections to the
gravitational interactions of charged leptons and their antiparticles in a
medium that contains electrons but not the other charged leptons, such as
normal matter. The gravitational coupling, which is universal at the tree
level, is found to be flavor-dependent, and also different for the
corresponding antiparticles, when the corrections of are taken into
account. General expressions are obtained for the matter-induced corrections to
the gravitational mass in a generic matter background, and explicit formulas
for those corrections are given in terms of the macroscopic parameters of the
medium for particular conditions of the background gases.Comment: Latex, axodraw, 39 pages. Added a few stylistic corrections and
clarifying statements in the treatment of the photon tadpole diagra
QED effective action at finite temperature
The QED effective Lagrangian in the presence of an arbitrary constant
electromagnetic background field at finite temperature is derived in the
imaginary-time formalism to one-loop order. The boundary conditions in
imaginary time reduce the set of gauge transformations of the background field,
which allows for a further gauge invariant and puts restrictions on the choice
of gauge. The additional invariant enters the effective action by a topological
mechanism and can be identified with a chemical potential; it is furthermore
related to Debye screening. In concordance with the real-time formalism, we do
not find a thermal correction to Schwinger's pair-production formula. The
calculation is performed on a maximally Lorentz covariant and gauge invariant
stage.Comment: 9 pages, REVTeX, 1 figure, typos corrected, references added, final
version to appear in Phys. Rev.
Thermal one- and two-graviton Green's functions in the temporal gauge
The thermal one- and two-graviton Green's function are computed using a
temporal gauge. In order to handle the extra poles which are present in the
propagator, we employ an ambiguity-free technique in the imaginary-time
formalism. For temperatures T high compared with the external momentum, we
obtain the leading T^4 as well as the subleading T^2 and log(T) contributions
to the graviton self-energy. The gauge fixing independence of the leading T^4
terms as well as the Ward identity relating the self-energy with the one-point
function are explicitly verified. We also verify the 't Hooft identities for
the subleading T^2 terms and show that the logarithmic part has the same
structure as the residue of the ultraviolet pole of the zero temperature
graviton self-energy. We explicitly compute the extra terms generated by the
prescription poles and verify that they do not change the behavior of the
leading and sub-leading contributions from the hard thermal loop region. We
discuss the modification of the solutions of the dispersion relations in the
graviton plasma induced by the subleading T^2 contributions.Comment: 17 pages, 5 figures. Revised version to be published in Phys. Rev.