167 research outputs found

    Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest trees

    Full text link
    1   The relative importance of niche- and dispersal-mediated processes in structuring diverse tropical plant communities remains poorly understood. Here, we link mesoscale beta diversity to soil variation throughout a lowland Bornean watershed underlain by alluvium, sedimentary and granite parent materials ( c . 340 ha, 8–200 m a.s.l.). We test the hypothesis that species turnover across the habitat gradient reflects interspecific partitioning of soil resources. 2   Floristic inventories (≥ 1 cm d.b.h.) of the Dipterocarpaceae, the dominant Bornean canopy tree family, were combined with extensive soil analyses in 30 (0.16 ha) plots. Six samples per plot were analysed for total C, N, P, K, Ca and Mg, exchangeable K, Ca and Mg, extractable P, texture, and pH. 3   Extractable P, exchangeable K, and total C, N and P varied significantly among substrates and were highest on alluvium. Thirty-one dipterocarp species ( n  = 2634 individuals, five genera) were recorded. Dipterocarp density was similar across substrates, but richness and diversity were highest on nutrient-poor granite and lowest on nutrient-rich alluvium. 4   Eighteen of 22 species were positively or negatively associated with parent material. In 8 of 16 abundant species, tree distribution (≥ 10 cm d.b.h.) was more strongly non-random than juveniles (1–10 cm d.b.h.), suggesting higher juvenile mortality in unsuitable habitats. The dominant species Dipterocarpus sublamellatus (> 50% of stems) was indifferent to substrate, but nine of 11 ‘subdominant’ species (> 8 individuals ha −1 ) were substrate specialists. 5   Eighteen of 22 species were significantly associated with soil nutrients, especially P, Mg and Ca. Floristic variation was significantly correlated with edaphic and geographical distance for all stems ≥ 1 cm d.b.h. in Mantel analyses. However, juvenile variation (1–10 cm d.b.h.) was more strongly related to geographical distance than edaphic factors, while the converse held for established trees (≥ 10 cm d.b.h.), suggesting increased importance of niche processes with size class. 6   Pervasive dipterocarp associations with soil factors suggest that niche partitioning structures dipterocarp tree communities. Yet, much floristic variation unrelated to soil was correlated with geographical distance between plots, suggesting that dispersal and niche processes jointly determine mesoscale beta diversity in the Bornean Dipterocarpaceae. Journal of Ecology (2005) doi: 10.1111/j.1365-2745.2005.01077.xPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72822/1/j.1365-2745.2005.01077.x.pd

    Photometric and Spectroscopic Observations of SN 1990E in NGC 1035: Observational Constraints for Models of Type II Supernovae

    Full text link
    We present 126 photometric and 30 spectral observation of SN 1990E spanning from 12 days before B maximum to 600 days past discovery. These observations show that SN 1990E was of type II-P, displaying hydrogen in its spectrum, and the characteristic plateau in its light curve. SN 1990E is one of the few SNe II which has been well observed before maximum light, and we present evidence that this SN was discovered very soon after its explosion. In the earliest spectra we identify, for the first time, several N II lines. We present a new technique for measuring extinction to SNe II based on the evolution of absorption lines, and use this method to estimate the extinction to SN 1990E, Av=1.5+/-0.3 mag. From our photometric data we have constructed a bolometric light curve for SN 1990E and show that, even at the earliest times, the bolometric luminosity was falling rapidly. We use the late-time bolometric light curve to show that SN 1990E trapped a majority of the gamma rays produced by the radioactive decay of 56Co, and estimate that SN 1990E ejected 0.073 Mo of 56Ni, an amount virtually identical to that of SN 1987A. [excerpt

    Genetic diversity of the myrtle rust pathogen (Austropuccinia psidii) in the Americas and Hawaii : global implications for invasive threat assessments

    Get PDF
    Since the myrtle rust pathogen (Austropuccinia psidii) was first reported (as Puccinia psidii) in Brazil on guava (Psidium guajava) in 1884, it has been found infecting diverse myrtaceous species. Because A. psidii has recently spread rapidly worldwide with an extensive host range, genetic and genotypic diversities were evaluated within and among A. psidii populations in its putative native range and other areas of myrtle rust emergence in the Americas and Hawaii. Microsatellite markers revealed several unique multilocus genotypes (MLGs), which grouped isolates into nine distinct genetic clusters [C1–C9 comprising C1: from diverse hosts from Costa Rica, Jamaica, Mexico, Puerto Rico, and USA‐Hawaii, and USA‐California; C2: from eucalypts (Eucalyptus spp.) in Brazil/Uruguay and rose apple (Syzygium jambos) in Brazil; C3: from eucalypts in Brazil; C4: from diverse hosts in USA‐Florida; C5: from Java plum (Syzygium cumini) in Brazil; C6: from guava and Brazilian guava (Psidium guineense) in Brazil; C7: from pitanga (Eugenia uniflora) in Brazil; C8: from allspice (Pimenta dioica) in Jamaica and sweet flower (Myrrhinium atropurpureum) in Uruguay; C9: from jabuticaba (Myrciaria cauliflora) in Brazil]. The C1 cluster, which included a single MLG infecting diverse host in many geographic regions, and the closely related C4 cluster are considered as a “Pandemic biotype,” associated with myrtle rust emergence in Central America, the Caribbean, USA‐Florida, USA‐Hawaii, Australia, China‐Hainan, New Caledonia, Indonesia and Colombia. Based on 19 bioclimatic variables and documented occurrences of A. psidii contrasted with reduced sets of specific genetic clusters (subnetworks, considered as biotypes), maximum entropy bioclimatic modelling was used to predict geographic locations with suitable climate for A. psidii which are at risk from invasion. The genetic diversity of A. psidii throughout the Americas and Hawaii demonstrates the importance of recognizing biotypes when assessing the invasive threats posed by A. psidii around the globe.USDA-Forest Service, RMRS-Forest and Woodlands Ecosystem Program, Western Wildlands Environmental Threat Assessment Center, Special Technology Development Program, State and Private Forestry, Forest Health Protection-Region 5; Conselho Nactional de Desenvolvimento Científico e Tecnológico, Brasil (CNPq); Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG); Research Joint Venture Agreements RMRS 15-JV-11221633-160 (Jane Stewart, Colorado State University) and RMRS 14-JV-11221633-117 (Western Forest Conservation Association).http://wileyonlinelibrary.com/journal/efp2019-02-01hj2018Forestry and Agricultural Biotechnology Institute (FABI)Plant Production and Soil Scienc

    History of clinical transplantation

    Get PDF
    How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York

    Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research

    Get PDF
    Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
    corecore