17 research outputs found

    Evolution of a Bose-condensed gas under variations of the confining potential

    Get PDF
    We discuss the dynamic properties of a trapped Bose-condensed gas under variations of the confining field and find analytical scaling solutions for the evolving coherent state (condensate). We further discuss the characteristic features and the depletion of this coherent state.Comment: 4 pages, no postscript figure

    Low Temperature Neutron Diffraction Study of MnTe

    Full text link
    Investigation of transport and magnetic properties of MnTe at low temperatures sInvestigation of transport and magnetic properties of MnTe at low temperatures showed anomalies like negative coefficient of resistance below 100K and a sharp rise in susceptibility at around 83K similar to a ferromagnetic transition. Low temperature powder neutron diffraction experiments were therefore carried out to understand the underlying phenomena responsible for such anomalous behavior. Our study indicates that the rise in susceptibility at low temperatures is due to strengthening of ferromagnetic interaction within the plane over the inter plane antiferromagnetic interactions.Comment: Appearing in J. Magn. Magn. Mate

    Effect of Ordering on Spinodal Decomposition of Liquid-Crystal/Polymer Mixtures

    Full text link
    Partially phase-separated liquid-crystal/polymer dispersions display highly fibrillar domain morphologies that are dramatically different from the typical structures found in isotropic mixtures. To explain this, we numerically explore the coupling between phase ordering and phase separation kinetics in model two-dimensional fluid mixtures phase separating into a nematic phase, rich in liquid crystal, coexisting with an isotropic phase, rich in polymer. We find that phase ordering can lead to fibrillar networks of the minority polymer-rich phase

    Spin-polarized transport and Andreev reflection in semiconductor/superconductor hybrid structures

    Full text link
    We show that spin-polarized electron transmission across semiconductor/superconductor (Sm/S) hybrid structures depends sensitively on the degree of spin polarization as well as the strengths of potential and spin-flip scattering at the interface. We demonstrate that increasing the Fermi velocity mismatch in the Sm and S regions can lead to enhanced junction transparency in the presence of spin polarization. We find that the Andreev reflection amplitude at the superconducting gap energy is a robust measure of the spin polarization magnitude, being independent of the strengths of potential and spin-flip scattering and the Fermi velocity of the superconductor.Comment: 4 pages, 2 figure

    Spreading Dynamics of Polymer Nanodroplets

    Full text link
    The spreading of polymer droplets is studied using molecular dynamics simulations. To study the dynamics of both the precursor foot and the bulk droplet, large drops of ~200,000 monomers are simulated using a bead-spring model for polymers of chain length 10, 20, and 40 monomers per chain. We compare spreading on flat and atomistic surfaces, chain length effects, and different applications of the Langevin and dissipative particle dynamics thermostats. We find diffusive behavior for the precursor foot and good agreement with the molecular kinetic model of droplet spreading using both flat and atomistic surfaces. Despite the large system size and long simulation time relative to previous simulations, we find no evidence of hydrodynamic behavior in the spreading droplet.Comment: Physical Review E 11 pages 10 figure

    Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions

    Full text link
    Excess contributions to the free energy due to interfaces occur for many problems encountered in the statistical physics of condensed matter when coexistence between different phases is possible (e.g. wetting phenomena, nucleation, crystal growth, etc.). This article reviews two methods to estimate both interfacial free energies and line tensions by Monte Carlo simulations of simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is based on thermodynamic integration. This method is useful to study flat and inclined interfaces for Ising lattices, allowing also the estimation of line tensions of three-phase contact lines, when the interfaces meet walls (where "surface fields" may act). A generalization to off-lattice systems is described as well. The second method is based on the sampling of the order parameter distribution of the system throughout the two-phase coexistence region of the model. Both the interface free energies of flat interfaces and of (spherical or cylindrical) droplets (or bubbles) can be estimated, including also systems with walls, where sphere-cap shaped wall-attached droplets occur. The curvature-dependence of the interfacial free energy is discussed, and estimates for the line tensions are compared to results from the thermodynamic integration method. Basic limitations of all these methods are critically discussed, and an outlook on other approaches is given
    corecore