53 research outputs found

    ISO Spectroscopy of Young Stellar Objects

    Get PDF
    Observations of gas-phase and solid-state species toward young stellar objects (YSOs) with the spectrometers on board the Infrared Space Observatory are reviewed. The excitation and abundances of the atoms and molecules are sensitive to the changing physical conditions during star-formation. In the cold outer envelopes around YSOs, interstellar ices contain a significant fraction of the heavy element abundances, in particular oxygen. Different ice phases can be distinguished, and evidence is found for heating and segregation of the ices in more evolved objects. The inner warm envelopes around YSOs are probed through absorption and emission of gas-phase molecules, including CO, CO_2, CH_4 and H_2O. An overview of the wealth of observations on gas-phase H_2O in star-forming regions is presented. Gas/solid ratios are determined, which provide information on the importance of gas-grain chemistry and high temperature gas-phase reactions. The line ratios of molecules such as H_2, CO and H_2O are powerful probes to constrain the physical parameters of the gas. Together with atomic and ionic lines such as [0 I] 63 µm, [S I] 25 µm and (Si II] 35 µm, they can also be used to distinguish between photon- and shock-heated gas. Finally, spectroscopic data on circumstellar disks around young stars are mentioned. The results are discussed in the context of the physical and chemical evolution of YSOs

    UV and EUV Instruments

    Full text link
    We describe telescopes and instruments that were developed and used for astronomical research in the ultraviolet (UV) and extreme ultraviolet (EUV) regions of the electromagnetic spectrum. The wavelength ranges covered by these bands are not uniquely defined. We use the following convention here: The EUV and UV span the regions ~100-912 and 912-3000 Angstroem respectively. The limitation between both ranges is a natural choice, because the hydrogen Lyman absorption edge is located at 912 Angstroem. At smaller wavelengths, astronomical sources are strongly absorbed by the interstellar medium. It also marks a technical limit, because telescopes and instruments are of different design. In the EUV range, the technology is strongly related to that utilized in X-ray astronomy, while in the UV range the instruments in many cases have their roots in optical astronomy. We will, therefore, describe the UV and EUV instruments in appropriate conciseness and refer to the respective chapters of this volume for more technical details.Comment: To appear in: Landolt-Boernstein, New Series VI/4A, Astronomy, Astrophysics, and Cosmology; Instruments and Methods, ed. J.E. Truemper, Springer-Verlag, Berlin, 201
    corecore