11 research outputs found
Recommended from our members
Calibration of an electron/proton monitor for the earth's radiation belt at 4 R/sub E/
A charged particle dosimeter (the Burst Detector Dosimeter or BDD) was designed and fabricated and will be flown on certain of the Global Positioning Satellite (GPS) series of spacecraft. The BDD will monitor the dose received by the GPS spacecraft from the fluxes of electrons and protons in the Earth's radiation belt. The BDD uses absorbers in front of silicon sensors to determine the energy thresholds for measuring incident particle fluxes; and the magnitude of energy loss in a single sensor distinguishes between ions and electrons over a wide range of energies. Our electron calibrations were performed to determine accurately the energy response function of the dosimeter. The experimentally determined energy and angular responses are used to determine the equivalent energy thresholds and geometric factors for idealized step function responses
Recommended from our members
Pitch angle distributions of > 30 keV electrons at geostationary altitudes. [Spherical harmonics, spatial distribution, probability]
The satellites 1976-059A and 1977-007A each carry energetic particle detectors which measure fluxes of electrons in the 30 to 300 keV energy range. Five separate sensors mounted at 30, 60, 90, 120, and 150/sup 0/ to the spacecraft spin axis provide two hundred samples of the three dimensional distribution function for every ten second spacecraft rotation. Spherical harmonic functions up to the fourth order were fit to the observed pitch angle distributions. The second and fourth order coefficients obtained for these fits were averaged for each hour of local time. The probability distributions for the averaged harmonic coefficients were calculated and are presented as a function of local time. Possible relations of these distributions to interplanetary conditions are discussed. Using the present analysis techniques, the intensity of electrons at the noon meridian is derived as a function of pitch angle and radial distance and is given by j(..cap alpha..,r) = 2.03 x 10/sup 8/ (0.49 sin/sup 4/./sup 78/..cap alpha.. + 0.51 sin/sup 0/./sup 27/..cap alpha..) e/sup -r/1.60/ el/cm/sup 2/ sec sr. 11 references
Recommended from our members
BDD: a dosimeter for the Global Positioning System
This report describes the design and operation of the BDD, a four-channel spectrometer carried by some satellites of the Global Positioning System to collect data about magnetically trapped particle fluxes. The methods of data collection and analysis are also discussed
Recommended from our members
Prediction of high-energy (> 0. 3 MeV) substorm-related magnetospheric particles. [Probability]
Measurements both at 6.6 R/sub E/ and in the plasma sheet (greater than or equal to 18 R/sub E/) show that high energy substorm-accelerated particles occur preferentially when the solar wind speed (V/sub sw/) is high. Virtually no > 0.3 MeV protons, for example, are observed in association with substorms that occur when V/sub sw/ is 700 km/sec. These results suggest that realtime monitoring of interplanetary conditions could allow simple, effective prediction of high energy magnetospheric particle disturbances. 7 references
Recommended from our members
Los Alamos synchronous orbit data set
Energetic electron (30-15000 keV) and proton 145 keV to 150 MeV) measurements made by Los Alamos National Laboratory sensors at geostationary orbit (6.6 R/sub E/) are summarized. The instrumentation employed and the satellite positions are described. The spacecraft have been variously located, but in their present configuration the Los Alamos satellites designated 1976-059, 1977-007, and 1979-053 are located, respectively, at approx. 70/sup 0/W, approx. 70/sup 0/E, and approx. 135/sup 0/W longitude. Several examples of the high temporal and full three-dimensional spatial measurement capabilities of these instruments are illustrated by examples from the published literature. Discussion is also given for the Los Alamos Synoptic Data Set (SDS) which gives a broad overview of the Los Alamos geostationary orbit measurements. The SDS data are plotted in terms of daily average spectra, 3-hour local time averages, and in a variety of statistical formats. The data summarize conditions from mid-1976 through 1978 (S/C 1976-059) and from early 1977 through 1978 (S/C 1977-007). The SDS compilations presented correspond to measurements at 35/sup 0/W, 70/sup 0/W, and 135/sup 0/W geographic longitude and thus are indicative of conditions at 9/sup 0/, 11/sup 0/, and 4.8/sup 0/ geomagnetic latitude, respectively. The bulk of the SDS report presents data plots which are organized according to Carrington solar rotations and, as such, the data are readily comparable to solar rotation-dependent interplanetary conditions. Potential applications of the Synoptic Data Set (available to all interested users in June 1981) are discussed
Recommended from our members
Los Alamos geostationary orbit synoptic data set: a compilation of energetic particle data
Energetic electron (30 to 2000 keV) and proton (145 keV to 150 MeV) measurements made by Los Alamos National Laboratory sensors at geostationary orbit 6.6 R/sub E/ are summarized. The data are plotted in terms of daily average spectra, 3-h local time averages, and in a variety of statistical formats. The data summarize conditions from mid-1976 through 1978 (S/C 1976-059) and from early 1977 through 1978 (S/C 1977-007). The compilations correspond to measurements at 35/sup 0/W, 70/sup 0/W, and 135/sup 0/W geographic longitude and, thus, are indicative of conditions at 9/sup 0/, 11/sup 0/, and 4.8/sup 0/ geomagnetic latitude, respectively. Most of this report is comprised of data plots that are organized according to Carrington solar rotations so that the data can be easily compared to solar rotation-dependent interplanetary data. As shown in prior studies, variations in solar wind conditions modulate particle intensity within the terrestrial magnetosphere. The effects of these variations are demonstrated and discussed. Potential uses of the Synoptic Data Set by the scientific and applications-oriented communities are also discussed
