47 research outputs found

    DOT Tomography of the Solar Atmosphere VII. Chromospheric Response to Acoustic Events

    Full text link
    We use synchronous movies from the Dutch Open Telescope sampling the G band, Ca II and Halpha with five-wavelength profile sampling to study the response of the chromosphere to acoustic events in the underlying photosphere. We first compare the visibility of the chromosphere in Ca II H and Halpha, demonstrate that studying the chromosphere requires Halpha data, and summarize recent developments in understanding why this is so. We construct divergence and vorticity maps of the photospheric flow field from the G-band images and locate specific events through the appearance of bright Ca II H grains. The reaction of the Halpha chromosphere is diagnosed in terms of brightness and Doppler shift. We show and discuss three particular cases in detail: a regular acoustic grain marking shock excitation by granular dynamics, a persistent flasher which probably marks magnetic-field concentration, and an exploding granule. All three appear to buffet overlying fibrils, most clearly in Dopplergrams. Although our diagnostic displays to dissect these phenomena are unprecedentedly comprehensive, adding even more information (photospheric Doppler tomography and magnetograms, chromospheric imaging and Doppler mapping in the ultraviolet) is warranted.Comment: accepted by Solar Physic

    The Similarity Hypothesis in General Relativity

    Full text link
    Self-similar models are important in general relativity and other fundamental theories. In this paper we shall discuss the ``similarity hypothesis'', which asserts that under a variety of physical circumstances solutions of these theories will naturally evolve to a self-similar form. We will find there is good evidence for this in the context of both spatially homogenous and inhomogeneous cosmological models, although in some cases the self-similar model is only an intermediate attractor. There are also a wide variety of situations, including critical pheneomena, in which spherically symmetric models tend towards self-similarity. However, this does not happen in all cases and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra

    Solar Intranetwork Magnetic Elements: bipolar flux appearance

    Full text link
    The current study aims to quantify characteristic features of bipolar flux appearance of solar intranetwork (IN) magnetic elements. To attack such a problem, we use the Narrow-band Filter Imager (NFI) magnetograms from the Solar Optical Telescope (SOT) on board \emph{Hinode}; these data are from quiet and an enhanced network areas. Cluster emergence of mixed polarities and IN ephemeral regions (ERs) are the most conspicuous forms of bipolar flux appearance within the network. Each of the clusters is characterized by a few well-developed ERs that are partially or fully co-aligned in magnetic axis orientation. On average, the sampled IN ERs have total maximum unsigned flux of several 10^{17} Mx, separation of 3-4 arcsec, and a lifetime of 10-15 minutes. The smallest IN ERs have a maximum unsigned flux of several 10^{16} Mx, separations less than 1 arcsec, and lifetimes as short as 5 minutes. Most IN ERs exhibit a rotation of their magnetic axis of more than 10 degrees during flux emergence. Peculiar flux appearance, e.g., bipole shrinkage followed by growth or the reverse, is not unusual. A few examples show repeated shrinkage-growth or growth-shrinkage, like magnetic floats in the dynamic photosphere. The observed bipolar behavior seems to carry rich information on magneto-convection in the sub-photospheric layer.Comment: 26 pages, 14 figure

    Reviewing off-axis telescope concepts A quest for highest possible dynamic range for photometry and angular resolution

    No full text
    15 pagesWe review off-axis telescope concepts that use unobstructed pupils. Built and prospective telescopes for ground and space astronomy will be presented and discussed. Such concepts offer great advantages in terms of emissivity, throughput, diffraction- limited energy concentration and higher dynamic range. The coronagraphic performance of off-axis telescopes will enable instruments, which are starving for higher dynamic range, for example, those devoted to faint companion detection and solar studies. Smaller telescopes like SOLAR-C (IfA/Haleakala Observatory), and the New Solar Telescope (NST/NJIT/ Big Bear Observatory) are operational and are test beds for the Advanced Technology Solar Telescope (ATST Project) for which site construction is beginning on Haleakala
    corecore