26 research outputs found

    The Spectrum of Electromagnetic Jets from Kerr Black Holes and Naked Singularities in the Teukolsky Perturbation Theory

    Full text link
    We give a new theoretical basis for examination of the presence of the Kerr black hole (KBH) or the Kerr naked singularity (KNS) in the central engine of different astrophysical objects around which astrophysical jets are typically formed: X-ray binary systems, gamma ray bursts (GRBs), active galactic nuclei (AGN), etc. Our method is based on the study of the exact solutions of the Teukolsky master equation for electromagnetic perturbations of the Kerr metric. By imposing original boundary conditions on the solutions so that they describe a collimated electromagnetic outflow, we obtain the spectra of possible {\em primary jets} of radiation, introduced here for the first time. The theoretical spectra of primary electromagnetic jets are calculated numerically. Our main result is a detailed description of the qualitative change of the behavior of primary electromagnetic jet frequencies under the transition from the KBH to the KNS, considered here as a bifurcation of the Kerr metric. We show that quite surprisingly the novel spectra describe linearly stable primary electromagnetic jets from both the KBH and the KNS. Numerical investigation of the dependence of these primary jet spectra on the rotation of the Kerr metric is presented and discussed.Comment: 18 pages, 35 figures, LaTeX file. Final version. Accepted for publication in Astrophysics and Space Science. Amendments. Typos corrected. Novel notion -"primary jet" is introduced. New references and comments adde

    Mathematical Modeling of Boson-Fermion Stars in the Generalized Scalar-Tensor Theories of Gravity

    Full text link
    A model of static boson-fermion star with spherical symmetry based on the scalar-tensor theory of gravity with massive dilaton field is investigated numerically. Since the radius of star is \textit{a priori} an unknown quantity, the corresponding boundary value problem (BVP) is treated as a nonlinear spectral problem with a free internal boundary. The Continuous Analogue of Newton Method (CANM) for solving this problem is applied. Information about basic geometric functions and the functions describing the matter fields, which build the star is obtained. In a physical point of view the main result is that the structure and properties of the star in presence of massive dilaton field depend essentially both of its fermionic and bosonic components.Comment: 16 pages, amstex, 5 figures, changed conten

    Gibbons-Hawking M-branes

    Full text link
    We present new M2 and M5-brane solutions in M-theory based on transverse Gibbons-Hawking spaces. These solutions provide realizations of fully localized type IIA D2/D6 and NS5/D6 brane intersections. One novel feature of these solutions is that the metric functions depend on more than two transverse coordinates (unlike all the other previous known solutions). All the solutions have eight preserved supersymmetries and the world-volume theories of the NS5-branes are new non-local, non-gravitational, six dimensional, T-dual little string theories with eight supersymmetries. We discuss the limits in which the dynamics of the D2 and NS5-branes decouple from the bulk for these solutions.Comment: 32 pages, 7 figures, few sentences added, a couple of typos corrected, to appear in JHE

    Approximative Analytic Study of Fermions in Magnetar's Crust; Ultra-relativistic Plane Waves, Heun and Mathieu Solutions and Beyond

    Full text link
    Working with a magnetic field periodic along OzOz and decaying in time, we deal with the Dirac-type equation characterizing the fermions evolving in magnetar's crust. For ultra-relativistic particles, one can employ the perturbative approach, to compute the conserved current density components. If the magnetic field is frozen and the magnetar is treated as a stationary object, the fermion's wave function is expressed in terms of the Heun's Confluent functions. Finally, we are extending some previous investigations on the linearly independent fermionic modes solutions to the Mathieu's equation and we discuss the energy spectrum and the Mathieu Characteristic Exponent.Comment: Accepted for publication in Astrophysics & Space Science, 15 pages, No figure
    corecore