15 research outputs found

    Chemical, Spectroscopic Characterization And Antibacterial Activities In Vitro Of A Novel Gold(i)-ibuprofen Complex

    No full text
    A novel gold(I) complex with ibuprofen was synthesized and characterized by chemical and spectroscopic measurements. Elemental analysis led to the composition AuC14H18O2N. Infrared, 1H and 13C NMR data suggest coordination of the ligand to Au(I) through the oxygen atom of the carboxylic group in a monodentate form. An antibiotic sensitive profile indicated antibacterial activity in vitro of the complex against Gram-negative (E. coli and P. aeruginosa) and Gram-positive (S. aureus) microorganisms. © 2010 Elsevier B.V. All rights reserved.145738740Sadler, P.J., Sue, R.E., The chemistry of gold drugs (1994) Met.-Based Drugs, 1, pp. 107-144Fricker, S.P., Metal based drugs: From serendipity to design (2007) Dalton Transactions, (43), pp. 4903-4917. , DOI 10.1039/b705551jYoun, H.S., Lee, J.Y., Saitoh, S.I., Miyake, K., Hwang, D.H., Auranofin, as an anti-rheumatic gold compound, suppresses LPS-induced homodimerization of TLR4 (2006) Biochemical and Biophysical Research Communications, 350 (4), pp. 866-871. , DOI 10.1016/j.bbrc.2006.09.097, PII S0006291X06021462Fox, C.L., Modak, S.M., Mechanism of silver sulfadiazine action on burn wound infections (1974) Antimicrob. Agents Chemother., 5, pp. 582-588Elsome, A.M., Hamilton-Miller, J.M.T., Brumfitt, W., Noble, W.C., Antimicrobial activities in vitro and in vivo of transition element complexes containing gold(I) and osmium(VI) (1996) Journal of Antimicrobial Chemotherapy, 37 (5), pp. 911-918. , DOI 10.1093/jac/37.5.911Corbi, P.P., Quintão, F.A., Ferraresi, D.K.D., Lustri, W.R., Amaral, A.C., Massabni, A.C., Chemical, spectroscopic characterization, and in vitro antibacterial studies of a new gold(I) complex with N-acetyl-L-cysteine (2010) J. Coord. Chem., 63, pp. 1390-1397Abbehausen, C., Heinrich, T.A., Abrão, E.P., Costa-Neto, C.M., Lustri, W.R., Formiga, A.L.B., Corbi, P.P., Chemical, spectroscopic characterization, DFT studies and initial pharmacological assays of a silver(I) complex with N-acetyl-l-cysteine (2011) Polyhedron, 30, pp. 579-583Cavicchioli, M., Massabni, A.C., Heinrich, T.A., Costa-Neto, C.M., Abrão, E.P., Fonseca, B.A.L., Castellano, E.E., Leite, C.Q.F., Pt(II) and Ag(I) complexes with acesulfame: Crystal structure and a study of their antitumoral, antimicrobial and antiviral activities (2010) J. Inorg. Biochem., 104, pp. 533-540El-Gamel, N.E.A., The interactions of metal ions with nonsteroidal anti-inflammatory drugs (oxicams) (2009) J. Coord. Chem., 62, pp. 2239-2260Defazio, S., Cini, R., Synthesis, X-ray structural characterization and solution studies of metal complexes containing the anti-inflammatory drugs meloxicam and tenoxicam (2003) Polyhedron, 22, pp. 1355-1366Kovala-Demertzi, D., Transition metal complexes of diclofenac with potentially interesting anti-inflammatory activity (2000) Journal of Inorganic Biochemistry, 79 (1-4), pp. 153-157. , DOI 10.1016/S0162-0134(99)00175-0, PII S0162013499001750Harrak, Y., Casula, G., Basset, J., Rosell, G., Plescia, S., Raffa, D., Cusimano, M.G., Pujol, M.D., Synthesis, anti-inflammatory activity, and in vitro antitumor effect of a novel class of cyclooxygenase inhibitors: 4-(Aryloyl)phenyl methyl sulfones (2010) J. Med. Chem., 53, pp. 6560-6571Zawidlak-Wegrzynska, B., Kawalec, M., Bosek, I., Luczyk-Juzwa, M., Adamus, G., Rusin, A., Filipczak, P., Kurcok, P., Synthesis and antiproliferative properties of ibuprofeneoligo(3- hydroxybutyrate) conjugates (2010) Eur. J. Med. Chem., 45, pp. 1833-1842Nakamoto, K., (1997) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, , fifth ed. John Wiley & Sons New YorkBauer, A.W., Kirby, W.M., Sheris, J.C., Turck, M., Antibiotic susceptibility testing by a standardized single disk method (1966) Am. J. Clin. Pathol., 45, pp. 493-496Clinical, L., (2007) Performance Standards for Antimicrobial Susceptibility TestingSeventeenth Informational Supplement, , Wayne, PA USALemaire, S., Glupczynski, Y., Duval, V., Joris, B., Tulkens, P.M., Bambeke, F.V., Activities of ceftobiprole and other cephalosporins against extracellular and intracellular (THP-1 macrophages and keratinocytes) forms of methicillin-susceptible and methicillin-resistant Staphylococcus aureus (2009) Antimicrob. Agents Chem., 53, pp. 2289-2297Nomiya, K., Noguchi, R., Ohsawa, K., Tsuda, K., Oda, M., Synthesis, crystal structure and antimicrobial activities of two isomeric gold(I) complexes with nitrogen-containing heterocycle and triphenylphosphine ligands, [Au(L)(PPh3)] (HL = pyrazole and imidazole) (2000) J. Inorg. Biochem., 78, pp. 363-37

    Silver Sulfadoxinate: Synthesis, Structural And Spectroscopic Characterizations, And Preliminary Antibacterial Assays In Vitro

    No full text
    The sulfa drug sulfadoxine (SFX) reacted with Ag+ ions in aqueous solution, affording a new silver(I) complex (AgSFX), which was fully characterized by chemical, spectroscopic and structural methods. Elemental, ESI-TOF mass spectrometric and thermal analyses of AgSFX suggested a [Ag(C12H13N4O2S)] empirical formula. Infrared spectroscopic measurements indicated ligand coordination to Ag(I) through the nitrogen atoms of the (deprotonated) sulfonamide group and by the pyrimidine ring, as well as through oxygen atom(s) of the sulfonamide group. These hypotheses were corroborated by 13C and 15N SS-NMR spectroscopy and by an unconventional structural characterization based on X-ray powder diffraction data. The latter showed that AgSFX crystallizes as centrosymmetric dimers with a strong Ag⋯Ag interaction of 2.7435(6) Å, induced by the presence of exo-bidentate N,N′ bridging ligands and the formation of an eight-membered ring of [AgNCN]2 sequence, nearly planar. Participation of oxygen atoms of the sulfonamide residues generates in the crystal a 1D coordination polymer, likely responsible for its very limited solubility in all common solvents. Besides the analytical, spectroscopic and structural description, the antibacterial properties of AgSFX were assayed using disc diffusion methods against Escherichia coli and Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive) bacterial strains. The AgSFX complex showed to be active against Gram-positive and Gram-negative bacterial strains, being comparable to the activities of silver sulfadiazine.1082180187Kean, W.F., Hart, L., Buchanan, W.W., (1997) Br. J. Rheumato., 36, pp. 560-572Atiyeh, B.S., Costagliola, M., Hayek, S.N., Dibo, S.A., (2007) Burns, 33, pp. 139-148Klasen, H.J., (2000) Burns, 26, pp. 117-130Klasen, H.J., (2000) Burns, 26, pp. 131-138Fox, C.L.J., (1983) Surg. Gynecol. Obstet., 157, pp. 82-88Fox, C.L., Modak, S.M., (1974) Antimicrob. Ag. Chemother., 5, pp. 582-588Cavicchioli, M., Massabni, A.C., Heinrich, T.A., Costa-Neto, C.M., Abrão, E.P., Fonseca, B.A.L., Castellano, E.E., Leite, C.Q.F., (2010) J. Inorg. Biochem., 104, pp. 533-540Lalueza, P., Monzón, M., Arruebo, M., Santamaría, J., (2011) Mater. Res. Bull., 46, pp. 2070-2076Clement, J.L., Jarrett, P.S., (1994) Metal Based Drugs, 1, pp. 467-482Silver, S., (2003) FEMS Microbiol. Rev., 27, pp. 341-353Wright, J.B., Lam, K., Burrell, R.E., (1998) Am. J. Infect. Control, 26, pp. 572-577Abbehausen, C., Heinrich, T.A., Abrão, E.P., Costa-Neto, C.M., Lustri, W.R., Formiga, A.L.B., Corbi, P.P., (2011) Polyhedron, 30, pp. 579-583De Paiva, R.E.F., Abbehausen, C., Gomes, A.F., Gozzo, F.C., Lustri, W.R., Formiga, A.L.B., Corbi, P.P., (2012) Polyhedron, 36, pp. 112-119Liu, W., Bensdorf, K., Hagenbach, A., Abram, U., Niu, B., Mariappan, A., Gust, R., (2011) Eur. J. Med. Chem., 46, pp. 5927-5934Mack, D.G., McLeod, R., (1984) Antimicrob. Agents Chemother., 26, pp. 26-30Gottlieb, M.S., Knight, S., Mitsuyasu, R., Weisman, J., Roth, M., Young, L.S., (1984) The Lancet, 324, p. 398399Schürmann, D., Bergmann, F., Albrecht, H., Padberg, J., Grünewald, T., Behnsch, M., Grobush, M., Suttorp, N., (2001) J. Infection, 42, pp. 8-15Schürmann, D., Bergmann, F., Albrecht, H., Padberg, J., Wünsche, T., Grünewald, T., Schürmann, M., Suttorp, N., (2002) Eur. J. Clin. Microbiol. Infect. Dis., 21, pp. 353-361Van Duijkeren, E., Vulto, A.G., Van Miert, A.S.J.P.A.M., (1994) J. Vet. Pharmacol. Therapy, 17, pp. 64-73Mechor, G.D., Jim, G.K., Janzen, E.D., (1988) Can. Vet. J., 29, pp. 438-443Greko, C., Bengtsson, B., Franklin, A., Jacobsson, S.O., Wiese, B., Luthman, J., (2002) J. Vet. Pharmacol. Therapy, 25, pp. 413-423Deshmukh, J.H., Deshpande, M.N., (2011) J. Chem. Pharm. Res., 3, pp. 899-902Ogunniran, K.O., Ajani, O.O., Ehi-Eromosele, C.O., Obaleye, J.A., Adekoya, J.A., Ajanaku, C.O., (2012) Int. J. Phys. Sci., 7, pp. 1998-2005Khade, B.C., Deore, P.M., Arbad, B.R., (2010) Int. J. Chem. Sci., 8, pp. 132-138Masciocchi, N., Moret, M., Cairati, P., Sironi, A., Ardizzia, G.A., La Monica, G., (1995) JCS, Dalton Trans., pp. 1671-1675Masciocchi, N., Sironi, A., (1997) JCS, Dalton Trans., pp. 4643-4650Masciocchi, N., Galli, S., Sironi, A., (2005) Commun. Inorg. Chem., 26, pp. 1-37Amaral, T.C., De Carvalho, G.S.G., Da Silva, A.D., Corbi, P.P., Masciocchi, N., Castellano, E.E., Cuin, A., (2014) J. Coord. Chem., 67, pp. 1380-1391TOPAS-R (Version 3.0). Bruker AXS, Karlswhe, Germany2005Bauer, A.W., Kirby, W.M., Sheris, J.C., Turck, M., (1966) Am. J. Clin. Pathol., 45, pp. 493-496Clinical and Laboratory Standards Institute, (2007) Performance Standards for Antimicrobial Susceptibility Testing, , seventeenth informational supplement: Wayne, PADa Silva, S.A., Leite, C.Q.F., Pavan, F.R., Masciocchi, N., Cuin, A., (2014) Polyhedron, 79, pp. 170-177Keller, E., (1986) Chem. Unserer Zeit, 20, pp. 178-180Cuin, A., Massabni, A.C., Leite, C.Q.F., Sato, D.N., Neves, A., Szpoganicz, B., Silva, M.S., Bortoluzzi, A.J., (2007) J. Inorg. Biochem., 101, pp. 291-296Shefter, E., Chmielewicz, Z.F., Blount, J.F., Brennan, T.F., Sackman, B.F., Sackman, P., (1972) J. Pharm. Sci., 61, pp. 872-877Baeziger, N.C., Struss, A.W., (1976) Inorg. Chem., 15, pp. 1807-1809Kolodziejski, W., Klinowski, J., (2002) Chem. Rev., 102, pp. 613-628Nakamoto, K., (1997) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, , 5th ed. John Wiley & Sons New York p. 102Altoparlak, U., Erol, S., Akcay, M.N., Celebi, F., Kadanali, A., (2004) Burns, 30, pp. 660-664Carvalho, M.A., De Paiva, R.E.F., Bergamini, F.R.G., Gomes, A.F., Gozzo, F.C., Lustri, W.R., Formiga, A.L.B., Corbi, P.P., (2013) J. Mol. Struct., 1031, pp. 125-131Costa, G.S.M., Corbi, P.P., Abbehausen, C., Formiga, A.L.B., Lustri, W.R., Cuin, A., (2012) Polyhedron, 34, pp. 210-21

    Palladium(ii) Complex With S-allyl-l-cysteine: New Solid-state Nmr Spectroscopic Measurements, Molecular Modeling And Antibacterial Assays

    No full text
    Nuclear magnetic resonance studies, molecular modeling and antibacterial assays of the palladium(II) complex with S-allyl-l-cysteine (deoxyalliin) are presented. Studies based on solid and solution 13C and 15N nuclear magnetic resonance (NMR) spectroscopy confirmed that the palladium(II) complex preserved the same structural arrangement in both states, with no modifications on coordination sphere when dissolved in water. Density functional theory (DFT) studies stated that the trans isomer is the most stable one. Antibacterial activities of S-allyl-l-cysteine and its palladium(II) complex were evaluated by antibiogram assays using the disc diffusion method. The palladium(II) complex showed an effective antibacterial activity against Staphylococcus aureus (Gram-positive), Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacterial cells. © 2010 Elsevier B.V. All rights reserved.781313318Rosenberg, B., Van Camp, L., Krigas, T., (1965) Nature, 205, pp. 698-699Farrell, N., (2002) Coord. Chem. Rev., 232, pp. 1-4Bakhtiar, R., Ochiai, E.I., (1999) Gen. Pharmacol., 32, pp. 525-540Jakupec, M.A., Galanski, M., Arion, V.B., Hartinger, C.G., Keppler, B., (2008) Dalton Trans., pp. 183-184Sohn, Y.S., Baek, H., Cho, Y.H., Lee, Y., Jung, O., Lee, C.O., Kim, Y.S., (1997) Int. J. Pharm., 153, pp. 79-91Kartalou, M., Essigmann, J.M., (2001) Mutat. Res., 478, pp. 1-21Butour, J.L., Wimmer, S., Wimmer, F., Castan, P., (1997) Chem. Biol. Interact., 104, pp. 165-178Lebwohl, D., Canetta, R., (1998) Eur. J. Cancer, 34, pp. 1522-1534Golfeto, C.C., Von Poelhsitz, G., Selistre-De-Araújo, H.S., Araujo, M.P., Ellena, J., Castellano, E.E., Lopes, L.G.L., Batista, A.A., (2010) J. Inorg. Biochem., 104, pp. 489-495Quiroga, A.G., Ranninger, C.N., (2004) Coord. Chem. Rev., 248, pp. 119-133Jin, V.X., Ranford, J.D., (2000) Inorg. Chim. Acta, 304, pp. 38-44Rau, T., Alsfasser, R., Zahl, A., Van Eldik, R., (1998) Inorg. Chem., 37, pp. 4223-4230Klasen, H.J., (2000) Burns, 26, pp. 117-130Nomiya, K., Yokoyama, H., (2002) J. Chem. Soc. Dalton Trans., 12, pp. 2483-2490Cavicchioli, M., Massabni, A.C., Heinrich, T.A., Costa-Neto, C.M., Abrão, E.P., Fonseca, B.A.L., Castellano, E.E., Leite, C.Q.F., (2010) J. Inorg. Biochem., 104, pp. 533-540Corbi, P.P., Quintão, F.A., Ferraresi, D.K.D., Lustri, W.R., Amaral, A.C., Massabni, A.C., (2010) J. Coord. Chem., 63, pp. 1390-1397Guerra, W., Azevedo, E.A., Monteiro, A.R.S., Bucciarelli-Rodriguez, M., Chartone-Souza, E., Nascimento, A.M.A., Fontes, A.P.S., Pereira-Maia, E.C., (2005) J. Inorg. Biochem., 99, pp. 2348-2354Sharma, K., Biyala, M.K., Swami, M., Fahmi, N., Singh, R.V., (2009) Russ. J. Coord. Chem., 35, pp. 142-148Suzuki, T., Sugii, M., Kakimoto, T., Tsuboi, N., (1961) Chem. Pharm. Bull., 9, pp. 251-252Corbi, P.P., Massabni, A.C., Moreira, A.G., Medrano, F.J., Jasiulionis, M.G., Costa-Neto, C.M., (2005) Can. J. Chem., 83, pp. 104-109Dion, M.E., Agler, M., John, A., (1997) Nutr. Cancer., 28, pp. 1-6Welch, C., Wuarin, L., Sidell, N., (1992) Cancer Lett., 63, pp. 211-219Li, G., Quiao, C.H., Lin, R.I., Pinto, J., Osborne, M.P., Tiwari, R.K., (1995) Oncol. Rep., 2, pp. 787-791Corbi, P.P., Massabni, A.C., (2006) Spectrochim. Acta A, 64, pp. 418-419Corbi, P.P., Massabni, A.C., Costa-Neto, C.M., (2006) J. Coord. Chem., 59, pp. 1101-1106Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Matsunaga, S.K.N., Montgomery Jr., J.A., (1993) J. Comput. Chem., 14, pp. 1347-1363Hay, P.J., Wadt, W.R., (1985) J. Chem. Phys., 82, pp. 299-311Ditchfie, R., Hehre, W.J., Pople, J.A., (1971) J. Chem. Phys., 54, pp. 724-728Hehre, W.J., Ditchfie, R., Pople, J.A., (1972) J. Chem. Phys., 56, pp. 2257-2262Francl, M.M., Pietro, W.J., Hehre, W.J., Binkley, J.S., Gordon, M.S., Defrees, D.J., Pople, J.A., (1982) J. Chem. Phys., 77, pp. 3654-3665Harihara, P.C., Pople, J.A., (1973) Theor. Chim. Acta, 28, pp. 213-222Becke, A.D., (1993) J. Chem. Phys., 98, pp. 5648-5652Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B, 37, pp. 785-789Bauer, A.W., Kirby, W.M., Sheris, J.C., Turck, M., (1966) Am. J. Clin. Pathol., 45, pp. 493-496(2007) Performance Standards for Antimicrobial Susceptibility TestingSeventeenth Informational Supplement, , Clinical and Laboratory Standards Institute - CLSI Wayne, PA, USALemaire, S., Glupczynski, Y., Duval, V., Joris, B., Tulkens, P.M., Van Bambeke, F., (2009) Antimicrob. Agents Chem., 56, pp. 2289-2297Cervantes, G., Moreno, V., Molins, E., Quirós, M., (1998) Polyhedron, 17, pp. 3343-3350Rai, M., Yadav, A., Gade, A., (2009) Biotechnol. Adv., 27, pp. 76-83Castellano, J.J., Shafii, S.M., Ko, F., Donate, G., Wright, T.E., Mannari, R.J., (2007) Int. Wound J., 4, pp. 114-12

    Synthesis, Spectroscopic Characterization, And Antibacterial Assays Invitro Of A New Platinum(ii) Complex With Methionine Sulfoxide

    No full text
    A new platinum(II) complex with methionine sulfoxide was synthesized and characterized by chemical and spectroscopic techniques. Elemental analyses, mass spectrometric measurements (electrospray ionization quadrupole time-of-flight mass spectrometry), and thermal analyses of the solid compound fit the composition [(C5H10NO3S)Pt(μ-Cl) 2Pt(C5H10NO3S)] 2.5H2O. Infrared spectroscopic data indicate coordination of the ligand to Pt(II) through the nitrogen of NH2 and the sulfur of the S=O group. 1H-15N nuclear magnetic resonance spectroscopic data confirm nitrogen coordination. Antibacterial activities were evaluated by antibiogram assays using the disc diffusion method. The platinum(II) complex showed antibacterial activity against Gram-negative Pseudomonas aeruginosa bacterial cells. © 2011 Taylor & Francis.642272280Jakupec, M.A., Galanski, M., Arion, V.B., Hartinger, C.G., Keppler, B.K., (2008) Dalton Trans, 183Bakhtiar, R., Ochiai, E.I., (1999) Gen. Pharmacol., 32, p. 525Boulikas, T., Vougiouka, M., (2003) Oncol. Rep., 10, p. 1663Farrell, N., (2002) Coord. Chem. Rev., 232, p. 1Rosenberg, B., Van Camp, L., Krigas, T., (1965) Nature, 205, p. 698Kelland, L., (2007) Nat. Rev. Cancer, 7, p. 573Tiekink, E.R.T., (2002) Crit. Rev. Oncol. Hematol., 42, p. 225Simon, T.M., Kunishima, D.H., Vibert, G.J., Lorber, A., (1981) Cancer Res., 41, p. 94Gabbiani, C., Casini, A., Messori, L., (2007) Gold Bull, 40, p. 73Golfeto, C.C., Von Poelhsitz, G., Selistre-De-Araújo, H.S., De Araujo, M.P., Ellena, J., Castellano, E.E., Lopes, L.G.L., Batista, A.A., (2010) J. Inorg. Biochem., 104, p. 489Gao, E.J., Liu, C., Zhu, M., Lin, H., Wu, Q., Liu, L., (2009) AntiCancer Agents Med. Chem., 9, p. 356Gao, E.J., Wu, Q., Wang, C.S., Zhu, M.C., Wang, L., Liu, H.Y., Huang, Y., Sun, Y.G., (2009) J. Coord. Chem., 62, p. 3425El-Gamel, N.E.A., (2010) J. Coord. Chem., 63, p. 534Corbi, P.P., Quintão, F.A., Ferraresi, D.K.D., Lustri, W.R., Amaral, A.C., Massabni, A.C., (2010) J. Coord. Chem., 63, p. 1390Gaballa, A.S., (2010) Spectrochim. Acta, Part A, 75, p. 146Cavicchioli, M., Massabni, A.C., Heinrich, T.A., Costa-Neto, C.M., Abrão, E.P., Fonseca, B.A.L., Castellano, E.E., Leite, C.Q.F., (2010) J. Inorg. Biochem., 104, p. 533Sharma, K., Biyala, M.K., Swami, M., Fahmi, N., Singh, R.V., (2009) Russ. J. Coord. Chem., 35, p. 142Freeman, W.A., (1977) Acta Crystallogr., Sect. B: Struct. Sci., 33, p. 191Freeman, W.A., Nicholls, L.J., Liu, C.F., (1978) Inorg. Chem., 17, p. 2989Corbi, P.P., Melnikov, P., Massabni, A.C., (2000) J. Alloys Compd., 308, p. 153Corbi, P.P., Cagnin, F., Sabeh, L.P.B., Massabni, A.C., Costa-Neto, C.M., (2007) Spectrochim. Acta, Part A, 66, p. 1171Massabni, A.C., Corbi, P.P., Melnikov, P., Zacharias, M.A., Rechenberg, H.R., (2004) J. Coord. Chem., 57, p. 1225Bauer, A.W., Kirby, W.M., Sheris, J.C., Turck, M., (1966) Am. J. Clin. Pathol., 45, p. 493(2007) Performance Standards for Antimicrobial Susceptibility Testing, , Clinical and Laboratory Standards Instituteseventeenth informational supplement, Clinical and Laboratory Standards InstituteNakamoto, K., (1997) Infrared and Raman Spectra of Inorganic and Coordination Compounds - Part B, 5th edn, pp. 59-104. , John Wiley & Sons, New YorkSilverstein, R.M., Webster, F.X., (1998) Spectrometric Identification of Organic Compounds 6th Edn, pp. 72-110. , John Wiley & Sons, New YorkPowder Diffraction Database - CD ROM. File 4-0802. The International Centre for Diffraction Data (JCPDS-ICDD) (1994)Guerra, W., Azevedo, E.A., Monteiro, A.R.S., Bucciarelli-Rodriguez, M., Chartone-Souza, E., Nascimento, A.M.A., Fontes, A.P.S., Pereira-Maia, E.C., (2005) J. Inorg. Biochem., 99, p. 234

    Chemical, Spectroscopic Characterization, Dft Studies And Initial Pharmacological Assays Of A Silver(i) Complex With N-acetyl-l-cysteine

    No full text
    A new silver(I) complex with N-acetyl-l-cysteine (NAC) of composition AgC5H8NO3S·H2O was synthesized and characterized by a set of chemical and spectroscopic measurements. Solid-state 13C nuclear magnetic resonance (SSNMR) and infrared (IR) analyses indicate the coordination of the ligand to Ag(I) through the sulfur atom. The Ag-NAC complex is slightly soluble in dimethyl sulfoxide. It is insoluble in water, methanol, ethanol, acetone and hexane. Antibacterial activity of the silver complex with N-acetyl-l-cysteine (Ag-NAC) was evaluated by antibiogram assays using the disc diffusion method. The compound showed an effective antibacterial activity against Staphylococcus aureus (Gram-positive), Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacterial cells. Biological analysis for evaluation of a potential cytotoxic effect of Ag-NAC was performed using HeLa cells derived from human cervical adenocarcinoma. The complex presented a significant cytotoxic activity, inducing 80% of cell death at a concentration of 200 μmol L-1. © 2010 Elsevier Ltd. All rights reserved.304579583Chopra, I., (2007) J. Antimicrob. Chemother., 59, p. 587Demling, R.H., Desanti, M.D.L., (2002) Burns, 28, p. 264Moyer, C.A., Brentano, L., Gravens, D.L., Margraf, H.W., Monafo, W.W., (1965) Arch. Surg., 90, p. 812Bellinger, C.G., Conway, H., (1970) Plast. Reconstr. Surg., 45, p. 582Fox, C.L., Modak, S.M., (1974) Antimicrob. Ag. Chemother., 5, p. 582Nomiya, K., Yokoyama, H., (2002) J. Chem. Soc., Dalton Trans., p. 2483Legler, E.V., Kazbanov, V.I., Kazachenko, A.S., (2002) J. Inorg. Chem., 47, p. 150Legler, E.V., Kazbanov, V.I., Kazachenko, A.S., (2002) Russ. J. Inorg. Chem., 47, p. 293Ruan, B., Tian, Y., Zhou, H., Wu, J., Liu, Z., Zhu, C., Yang, J., Zhu, H., (2009) J. Organomet. Chem., 694, p. 2883Cavicchioli, M., Massabni, A.C., Heinrich, T.A., Costa-Neto, C.M., Abrão, E.P., Fonseca, B.A.L., Castellano, E.E., Leite, C.Q.F., (2010) J. Inorg. Biochem., 104, p. 533Aruoma, O.I., Halliwell, B., Hoey, B.M., (1989) Free Radic. Biol. Med., 6, p. 593Gillisen, A., Jaworska, M., Orth, M., (1997) Respir. Med., 91, p. 159Corbi, P.P., Cagnin, F., Massabni, A.C., (2008) J. Coord. Chem., 61, p. 3666Corbi, P.P., Cagnin, F., Massabni, A.C., (2009) J. Coord. Chem., 62, p. 2764Corbi, P.P., Quintão, F.A., Ferrares, D.K.D., Lustri, W.R., Amaral, A.C., Massabni, A.C., (2010) J. Coord. Chem., 63, p. 1390Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Matsunaga, S.K.N., Montgomery Jr., J.A., (1993) J. Comput. Chem., 14, p. 1347Hay, P.J., Wadt, W.R., (1985) J. Chem. Phys., 82, p. 299Ditchfie, R., Hehre, W.J., Pople, J.A., (1971) J. Chem. Phys., 54, p. 724Hehre, W.J., Ditchfie, R., Pople, J.A., (1972) J. Chem. Phys., 56, p. 2257Francl, M.M., Pietro, W.J., Hehre, W.J., Binkley, J.S., Gordon, M.S., Defrees, D.J., Pople, J.A., (1982) J. Chem. Phys., 77, p. 3654Harihara, P.C., Pople, J.A., (1973) Theor. Chim. Acta, 28, p. 213Becke, A.D., (1993) J. Chem. Phys., 98, p. 5648Lee, C.T., Yang, W.T., Parr, R.G., (1988) Phys. Rev. B, 37, p. 785Scott, A.P., Radom, L., (1996) J. Phys. Chem., 100, p. 16502Schaftenaar, G., Noordik, J.H., (2000) J. Comput-Aided Mol. Des., 14, p. 123Bauer, A.W., Kirby, W.M., Sheris, J.C., Turck, M., (1966) Am. J. Clin. Pathol., 45, p. 493(2007) Performance Standards for Antimicrobial Susceptibility Testing, , Clinical and Laboratory Standards Institute Seventeenth Informational Supplement. Wayne, PA, USAMosmann, T., (1983) J. Immunol. Methods, 65, p. 55Rubinstein, L.V., Shoemaker, R.H., Paull, K.D., Simon, R.M., Tosini, S., Skehan, P., Scudiero, D.A., Boyd, M.R., (1990) J. Nat. Cancer Inst., 82, p. 1113Ueyama, N., Hosoi, T., Yamada, Y., Doi, M., Okamura, T., Nakamura, A., (1998) Macromolecules, 31, p. 7119Wazeer, M.I.M., Isab, A.A., Ahmad, S., (2005) J. Coord. Chem., 58, p. 391MacIejewska, D., Rasztawicka, M., Wolska, I., Anuszewska, E., Gruber, B., (2009) Eur. J. Med. Chem., 44, p. 4136Nakamoto, K., (1963) Infrared and Raman Spectra of Inorganic and Coordination Compounds, , first ed. John Wiley and Sons New YorkMitchell, K.A., Jensen, C.M., (1995) Inorg. Chem., 34, p. 4441Rai, M., Yadav, A., Gade, A., (2009) Biotechnol. Adv., 27, p. 76Castellano, J.J., Shafii, S.M., Ko, F., Donate, G., Wright, T.E., Mannari, R.J., (2007) Int. Wound J., 4, p. 11

    Synthesis, spectroscopic characterization, DFT studies and biological assays of a novel gold(I) complex with 2-mercaptothiazoline

    No full text
    A new gold(I) complex with 2-mercaptothiazoline (MTZ) with the coordination formula [AuCN(C3H5NS2)] was synthesized and characterized by chemical and spectroscopic measurements, DFT studies and biological assays. Infrared (IR) and 1H, 13C and 15N nuclear magnetic resonance (NMR) spectroscopic measurements indicate coordination of the ligand to gold(I) through the nitrogen atom. Studies based on DFT confirmed nitrogen coordination to gold(I) as a minimum of the potential energy surface with calculations of the hessians showing no imaginary frequencies. Thermal decomposition starts at temperatures near 160°C, leading to the formation of Au0 as the final residue at 1000°C. The gold(I) complex with 2-mercaptothiazoline (Au-MTZ) is soluble in dimethyl sulfoxide (DMSO), and is insoluble in water, methanol, ethanol, acetonitrile and hexane. The antibacterial activities of the Au-MTZ complex were evaluated by an antibiogram assay using the disc diffusion method. The compound showed an effective antibacterial activity against Staphylococcus aureus (Gram-positive) and Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacterial cells. Biological analysis for evaluation of the cytotoxic effect of the Au-MTZ complex was performed using HeLa cells derived from human cervical adenocarcinoma. The complex presented a potent cytotoxic activity, inducing 85% of cell death at a concentration of 2.0 μmol L-1.301323542359CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP141617/2010-12006/55367-

    A New Platinum Complex With Tryptophan: Synthesis, Structural Characterization, Dft Studies And Biological Assays In Vitro Over Human Tumorigenic Cells

    No full text
    A new platinum(II) complex with the amino acid L-tryptophan (trp), named Pt-trp, was synthesized and characterized. Elemental, thermogravimetric and ESI-QTOF mass spectrometric analyses led to the composition [Pt(C 11H11N2O2)2] ×6H2O. Infrared spectroscopic data indicate the coordination of trp to Pt(II) through the oxygen of the carboxylate group and also through the nitrogen atom of the amino group. The 13C CP/MAS NMR spectroscopic data confirm coordination through the oxygen atom of the carboxylate group, while the 15N CP/MAS NMR data confirm coordination of the nitrogen of the NH2 group to the metal. Density functional theory (DFT) studies were applied to evaluate the cis and trans coordination modes of trp to platinum(II). The trans isomer was shown to be energetically more stable than the cis one. The Pt-trp complex was evaluated as a cytotoxic agent against SK-Mel 103 (human melanoma) and Panc-1 (human pancreatic carcinoma) cell lines. The complex was shown to be cytotoxic over the considered cells. © 2013 Elsevier B.V. All rights reserved.122209215Barefoot, R.R., (2001) J. Chromatogr. B, 751, pp. 205-211Lebwohl, D., Canetta, R., (1998) Eur. J. Cancer, 34, pp. 1522-1534Rafique, S., Idrees, M., Nasim, A., Akbar, H., Athar, A., (2010) Biotechnol. Mol. Biol. Rev., 5, pp. 38-45Kelland, L., (2007) Nat. Rev. Cancer, 7, pp. 573-584Ivanov, A.I., Christodoulou, J., Parkinson, J.A., Barnham, K.J., Tucker, A., Woodrow, J., Sadler, P.J., (1998) J. Biol. Chem., 273, pp. 14721-14730Khalailar, I., Allardyce, C.S., Verna, C.S., Dyson, P.J., (2005) ChemBioChem, 6, pp. 1788-1795Cutillas, N., Yellol, G.S., Haro, C., Vicente, C., Rodriguez, V., Ruiz, J., (2013) Coord. Chem. Rev., 257, pp. 2784-2797Chiririwa, H., Moss, J.R., Hendricks, D., Smith, G.S., Meijboom, R., (2013) Polyhedron, 49, pp. 29-35Castello, W.S., Spera M B, M., Gomes, A.F., Gozzo, F.C., Lustri, W.R., Formiga, A.L.B., Corbi, P.P., (2011) J. Coord. Chem., 64, pp. 272-280Spera, M.B.M., Quintão, F.A., Ferraresi, D.K.D., Lustri, W.R., Magalhães, A., Formiga, A.L.B., Corbi, P.P., (2011) Spectrochim. Acta A, 78, pp. 313-318Corbi, P.P., Massabni, A.C., Moreira, A.G., Medrano, F.J., Jasiulionis, M.G., Costa-Neto, C.M., (2005) Can. J. Chem.-Revue Canadienne de Chimie, 83, pp. 104-109Corbi, P.P., Massabni, A.C., (2006) Spectrochim. Acta A, 64, pp. 418-419Cavicchioli, M., Massabni, A.C., Heinrich, T.A., Costa-Neto, C.M., Abrão, E.P., Fonseca, B.A.L., Castellano, E.E., Leite, C.Q.F., (2010) J. Inorg. Biochem., 104, pp. 533-540Dunbar, R.C., Steill, J.D., Polfer, N.C., Oomens, J., (2008) J. Phys. Chem. A, 112, pp. 10823-10830Wagner, C.C., Baran, E.J., (2004) Acta Farm. Bonaerense, 23, pp. 339-342Kazachenko, A.S., Legler, A.V., Peryanova, O.V., Vstavskaya, Y.A., (2000) Pharm. Chem. J., 34, pp. 257-258Carvalho, M.A., Souza, B.C., Paiva, R.E.F., Bergamini, F.R.G., Gomes, A.F., Gozzo, F.C., Lustri, W.R., Corbi, P.P., (2012) J. Coord. Chem., 65, pp. 1700-1711Carvalho, M.A., De Paiva, R.E.F., Bergamini, F.R.G., Gomes, A.F., Gozzo, F.C., Lustri, W.R., Formiga, A.L.B., Corbi, P.P., (2013) J. Mol. Struct., 1031, pp. 125-131Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Matsunaga, S.K.N., Montgomery, Jr.J.A., (1993) J. Comput. Chem., 14, pp. 1347-1363Hay, P.J., Wadt, W.R., (1985) J. Chem. Phys., 82, pp. 299-310Ditchfie, R., Hehre, W.J., Pople, J.A., (1971) J. Chem. Phys., 54, pp. 724-728Hehre, W.J., Ditchfie, R., Pople, J.A., (1972) J. Chem. Phys., 56, pp. 2257-2261Francl, M.M., Pietro, W.J., Hehre, W.J., Binkley, J.S., Gordon, M.S., Defrees, D.J., Pople, J.A., (1982) J. Chem. Phys., 77, pp. 3654-3665Harihara, P.C., Pople, J.A., (1973) Theor. Chim. Acta, 28, pp. 213-222Becke, A.D., (1993) J. Chem. Phys., 98, pp. 5648-5652Lee, C.T., Yang, W.T., Parr, R.G., (1988) Phys. Rev. B, 37, pp. 785-789Miertus, S., Scrocco, E., Tomasi, J., (1981) Chem. Phys., 55, pp. 117-129Bonacin, J.A., Formiga, A.L.B., Melo, V.H.S., Toma, H.E., (2007) Vib. Spectrosc., 44, pp. 133-141Scott, A.P., Radom, L., (1996) J. Phys. Chem., 100, pp. 16502-16513Mosmann, T., (1983) J. Immunol. Methods, 65, pp. 55-63(1994) Powder Diffraction Database - CD ROM, , File 46-1043 (JCPDS-ICDD)Hu, J., Fu, R., Ye, C., (1992) Chem. Phys. Lett., 195, pp. 159-162Çakir, S., Biçer, E., (2010) J. Chil. Chem. Soc., 55, pp. 236-239Gao, H., (2011) Spectrochim. Acta A, 79, pp. 687-69
    corecore