55 research outputs found

    Electron Dynamics in Quantum Dots on Helium Surface

    Full text link
    We study single-electron quantum dots on helium surface created by electrodes submerged into the helium. The intradot potential is electrostatically controlled. We find the electron energy spectrum and identify relaxation mechanisms. Strong in-plane confinement significantly slows down electron relaxation. Energy relaxation is due primarily to coupling to phonons in helium. Dephasing is determined by thermally excited ripplons and by noise from underlying electrodes. The decay rate can be further suppressed by a magnetic field normal to the helium surface. Slow relaxation in combination with control over the energy spectrum make localized electrons appealing as potential qubits of a quantum computer.Comment: Presented at Electronic Properties of Two-Dimensional Systems-1

    Trapping electrons in electrostatic traps over the surface of helium

    Full text link
    We have observed trapping of electrons in an electrostatic trap formed over the surface of liquid helium-4. These electrons are detected by a Single Electron Transistor located at the centre of the trap. We can trap any desired number of electrons between 1 and ∼30\sim 30. By repeatedly (∼103−104\sim 10^3-10^4 times) putting a single electron into the trap and lowering the electrostatic barrier of the trap, we can measure the effective temperature of the electron and the time of its thermalisation after heating up by incoherent radiation.Comment: Presented at QFS06 - Kyoto, to be published in J. Low Temp. Phys., 6 pages, 3 figure

    Excitons in Mott insulators

    Full text link
    Motivated by recent Raman and resonant inelastic X-ray scattering experiments performed for Mott insulators, which suggest formation of excitons in these systems, we present a theory of exciton formation in the upper Hubbard band. The analysis based on the spin polaron approach is performed in the framework of an effective t-J model for the subspace of states with one doubly occupied site. Our results confirm the existence of excitons and bear qualitative resemblance to experimental data despite some simplifications in our approach. They prove that the basic underlying mechanismof exciton formation is the same as that which gives rise to binding of holes in weakly doped antiferromagnets.Comment: 4 pages, 1 figur

    Magnetoresistance of nondegenerate quantum electron channels formed on the surface of superfluid helium

    Full text link
    Transport properties of quasi-one-dimensional nondegenerate quantum wires formed on the surface of liquid helium in the presence of a normal magnetic field are studied using the momentum balance equation method and the memory function formalism. The interaction with both kinds of scatterers available (vapor atoms and capillary wave quanta) is considered. We show that unlike classical wires, quantum nondegenerate channels exhibit strong magnetoresistance which increases with lowering the temperature.Comment: 8 pages, 7 figure

    Hysteresis in the Mott Transition between Plasma and Insulating Gas

    Full text link
    We show that hysteresis can occur in the transition between a neutral plasma and the insulating gas consisting of neutral pairs bound by Coulomb attraction. Since the transition depends sensitively on the screening length in the plasma, regions of bistability occur in density--temperature phase space. We present numerical results which indicate where these regions occur for systems such as spin-polarized hydrogen, positronium gas, and excitons in a semiconductor.Comment: 9 pages (Latex/RevTex), 6 postscript figures which are in compressed and uuencoded file, prepared using the utility "uufiles" and separately submitted. They should be automatically included with the text when it is downloaded. Figures also available in hard copy from the authors ([email protected]; [email protected]); paper submitted to Phys. Rev.

    A low power photoemission source for electrons on liquid helium

    Full text link
    Electrons on the surface of liquid helium are a widely studied system that may also provide a promising method to implement a quantum computer. One experimental challenge in these studies is to generate electrons on the helium surface in a reliable manner without heating the cryo-system. An electron source relying on photoemission from a zinc film has been previously described using a high power continuous light source that heated the low temperature system. This work has been reproduced more compactly by using a low power pulsed lamp that avoids any heating. About 5e3 electrons are collected on 1 cm^2 of helium surface for every pulse of light. A time-resolved experiment suggests that electrons are either emitted over or tunnel through the 1eV barrier formed by the thin superfluid helium film on the zinc surface. No evidence of trapping or bubble formation is seen.Comment: 9 pages, 3 figures, submitted to J. Low Temp. Phy

    Universal Quantum Computation using Exchange Interactions and Teleportation of Single-Qubit Operations

    Get PDF
    We show how to construct a universal set of quantum logic gates using control over exchange interactions and single- and two-spin measurements only. Single-spin unitary operations are teleported instead of being executed directly, thus eliminating a major difficulty in the construction of several of the most promising proposals for solid-state quantum computation, such as spin-coupled quantum dots, donor-atom nuclear spins in silicon, and electrons on helium. Contrary to previous proposals dealing with this difficulty, our scheme requires no encoding redundancy. We also discuss an application to superconducting phase qubits.Comment: 4.5 pages, including 2 figure

    Unrestricted Hartree-Fock theory of Wigner crystals

    Full text link
    We demonstrate that unrestricted Hartree-Fock theory applied to electrons in a uniform potential has stable Wigner crystal solutions for rs≥1.44r_s \geq 1.44 in two dimensions and rs≥4.5r_s \geq 4.5 in three dimensions. The correlation energies of the Wigner crystal phases are considerably smaller than those of the fluid phases at the same density.Comment: 4 pages, 5 figure

    Entanglement in quantum computers described by the XXZ model with defects

    Full text link
    We investigate how to generate maximally entangled states in systems characterized by the Hamiltonian of the XXZ model with defects. Some proposed quantum computers are described by such model. We show how the defects can be used to obtain EPR states and W states when one or two excitations are considered.Comment: 4 pages, 1 figur

    Electron transport in a quasi-one dimensional channel on suspended helium films

    Full text link
    Quasi-one dimensional electron systems have been created using a suspended helium film on a structured substrate. The electron mobility along the channel is calculated by taking into account the essential scattering processes of electrons by helium atoms in the vapor phase, ripplons, and surface defects of the film substrate. It is shown that the last scattering mechanism may dominate the electron mobility in the low temperature limit changing drastically the temperature dependence of the mobility in comparison with that controlled by the electron-ripplon scattering.Comment: 4 pages, 1 figur
    • …
    corecore