14 research outputs found
Statistical mechanics of permanent random atomic and molecular networks: Structure and heterogeneity of the amorphous solid state
Under sufficient permanent random covalent bonding, a fluid of atoms or small
molecules is transformed into an amorphous solid network. Being amorphous,
local structural properties in such networks vary across the sample. A natural
order parameter, resulting from a statistical-mechanical approach, captures
information concerning this heterogeneity via a certain joint probability
distribution. This joint probability distribution describes the variations in
the positional and orientational localization of the particles, reflecting the
random environments experienced by them, as well as further information
characterizing the thermal motion of particles. A complete solution, valid in
the vicinity of the amorphous solidification transition, is constructed
essentially analytically for the amorphous solid order parameter, in the
context of the random network model and approach introduced by Goldbart and
Zippelius [Europhys. Lett. 27, 599 (1994)]. Knowledge of this order parameter
allows us to draw certain conclusions about the stucture and heterogeneity of
randomly covalently bonded atomic or molecular network solids in the vicinity
of the amorphous solidification transition. Inter alia, the positional aspects
of particle localization are established to have precisely the structure
obtained perviously in the context of vulcanized media, and results are found
for the analogue of the spin glass order parameter describing the orientational
freezing of the bonds between particles.Comment: 31 pages, 5 figure
Density-correlator signatures of the vulcanization transition
Certain density correlators, measurable via various experimental techniques,
are studied in the context of the vulcanization transition. It is shown that
these correlators contain essential information about both the vulcanization
transition and the emergent amorphous solid state. Contact is made with various
physical ingredients that have featured in experimental studies of amorphous
colloidal and gel systems and in theoretical studies of the glassy state.Comment: 7 pages, 1 figur
Density-correlator signatures of the vulcanization transition
Certain density correlators, measurable via various experimental techniques,
are studied in the context of the vulcanization transition. It is shown that
these correlators contain essential information about both the vulcanization
transition and the emergent amorphous solid state. Contact is made with various
physical ingredients that have featured in experimental studies of amorphous
colloidal and gel systems and in theoretical studies of the glassy state.Comment: 7 pages, 1 figur
Connecting the vulcanization transition to percolation
The vulcanization transition is addressed via a minimal
replica-field-theoretic model. The appropriate long-wave-length behavior of the
two- and three-point vertex functions is considered diagrammatically, to all
orders in perturbation theory, and identified with the corresponding quantities
in the Houghton-Reeve-Wallace field-theoretic approach to the percolation
critical phenomenon. Hence, it is shown that percolation theory correctly
captures the critical phenomenology of the vulcanization transition associated
with the liquid and critical states.Comment: 9 pages, 5 figure
Vortex lattice stability in the SO(5) model
We study the energetics of superconducting vortices in the SO(5) model for
high- materials proposed by Zhang. We show that for a wide range of
parameters normally corresponding to type II superconductivity, the free energy
per unit flux \FF(m) of a vortex with flux quanta is a decreasing
function of , provided the doping is close to its critical value. This
implies that the Abrikosov lattice is unstable, a behaviour typical of type I
superconductors. For dopings far from the critical value, \FF(m) can become
very flat, indicating a less rigid vortex lattice, which would melt at a lower
temperature than expected for a BCS superconductor.Comment: 4 pp, revtex, 5 figure
Competing orders in a magnetic field: spin and charge order in the cuprate superconductors
We describe two-dimensional quantum spin fluctuations in a superconducting
Abrikosov flux lattice induced by a magnetic field applied to a doped Mott
insulator. Complete numerical solutions of a self-consistent large N theory
provide detailed information on the phase diagram and on the spatial structure
of the dynamic spin spectrum. Our results apply to phases with and without
long-range spin density wave order and to the magnetic quantum critical point
separating these phases. We discuss the relationship of our results to a number
of recent neutron scattering measurements on the cuprate superconductors in the
presence of an applied field. We compute the pinning of static charge order by
the vortex cores in the `spin gap' phase where the spin order remains
dynamically fluctuating, and argue that these results apply to recent scanning
tunnelling microscopy (STM) measurements. We show that with a single typical
set of values for the coupling constants, our model describes the field
dependence of the elastic neutron scattering intensities, the absence of
satellite Bragg peaks associated with the vortex lattice in existing neutron
scattering observations, and the spatial extent of charge order in STM
observations. We mention implications of our theory for NMR experiments. We
also present a theoretical discussion of more exotic states that can be built
out of the spin and charge order parameters, including spin nematics and phases
with `exciton fractionalization'.Comment: 36 pages, 33 figures; for a popular introduction, see
http://onsager.physics.yale.edu/superflow.html; (v2) Added reference to new
work of Chen and Ting; (v3) reorganized presentation for improved clarity,
and added new appendix on microscopic origin; (v4) final published version
with minor change
Connections between relative entropy of entanglement and geometric measure of entanglement
As two of the most important entanglement measures---the entanglement of formation and the entanglement of distillation---have so far been limited to bipartite settings, the study of other entanglement measures for multipartite systems appears necessary. Here, connections between two other entanglement measures---the relative entropy of entanglement and the geometric measure of entanglement---are investigated. It is found that for arbitrary pure states the latter gives rise to a lower bound on the former. For certain pure states, some bipartite and some multipartite, this lower bound is saturated, and thus their relative entropy of entanglement can be found analytically in terms of their known geometric measure of entanglement. For certain mixed states, upper bounds on the relative entropy of entanglement are also established. Numerical evidence strongly suggests that these upper bounds are tight, i.e., they are actually the relative entropy of entanglement.</jats:p
