90 research outputs found
Novel Phases in the Field Induced Spin Density Wave State in (TMTSF)_2PF_6
Magnetoresistance measurements on the quasi one-dimensional organic conductor
(TMTSF)_2PF_6 performed in magnetic fields B up to 16T, temperatures T down to
0.12K and under pressures P up to 14kbar have revealed new phases on its P-B-T
phase diagram. We found a new boundary which subdivides the field induced spin
density wave (FISDW) phase diagram into two regions. We showed that a
low-temperature region of the FISDW diagram is characterized by a hysteresis
behavior typical for the first order transitions, as observed in a number of
studies. In contrast to the common believe, in high temperature region of the
FISDW phase diagram, the hysteresis and, hence, the first order transitions
were found to disappear. Nevertheless, sharp changes in the resistivity slope
are observed both in the low and high temperature domains indicating that the
cascade of transitions between different subphases exists over all range of the
FISDW state. We also found that the temperature dependence of the resistance
(at a constant B) changes sign at about the same boundary. We compare these
results with recent theoretical models.Comment: LaTex, 4 pages, 4 figure
Smectic Liquid Crystals: Materials with One-Dimensional, Periodic Order
Smectic liquid crystals are materials formed by stacking deformable, fluid
layers. Though smectics prefer to have flat, uniformly-spaced layers, boundary
conditions can impose curvature on the layers. Since the layer spacing and
curvature are intertwined, the problem of finding minimal configurations for
the layers becomes highly nontrivial. We discuss various topological and
geometrical aspects of these materials and present recent progress on finding
some exact layer configurations. We also exhibit connections to the study of
certain embedded minimal surfaces and briefly summarize some important open
problems.Comment: 16 page
Layer dynamics of a freely standing smectic-A film
We study the hydrodynamics of a freely-standing smectic-A film in the
isothermal, incompressible limit theoretically by analyzing the linearized
hydrodynamic equations of motion with proper boundary conditions. The dynamic
properties for the system can be obtained from the response functions for the
free surfaces. Permeation is included and its importance near the free surfaces
is discussed. The hydrodynamic mode structure for the dynamics of the system is
compared with that of bulk systems. We show that to describe the dynamic
correlation functions for the system, in general, it is necessary to consider
the smectic layer displacement and the velocity normal to the layers,
, together. Finally, our analysis also provides a basis for the
theoretical study of the off-equilibrium dynamics of freely-standing smectic-A
films.Comment: 22 pages, 4 figure
Homogeneous nucleation of a non-critical phase near a continuous phase transition
Homogeneous nucleation of a new phase near a second, continuous, transition,
is considered. The continuous transition is in the metastable region associated
with the first-order phase transition, one of whose coexisting phases is
nucleating. Mean-field calculations show that as the continuous transition is
approached, the size of the nucleus varies as the response function of the
order parameter of the continuous transition. This response function diverges
at the continuous transition, as does the temperature derivative of the free
energy barrier to nucleation. This rapid drop of the barrier as the continuous
transition is approached means that the continuous transition acts to reduce
the barrier to nucleation at the first-order transition. This may be useful in
the crystallisation of globular proteins.Comment: 6 pages, 1 figur
Spin-density-wave instabilities in the organic conductor (TMTSF)_2ClO_4: Role of anion ordering
We study the spin-density-wave instabilities in the quasi-one-dimensional
conductor (TMTSF)_2ClO_4. The orientational order of the anions ClO_4 doubles
the unit cell and leads to the presence of two electrnic bands at the Fermi
level. From the Ginzburg-Landau expansion of the free energy, we determine the
low-temperature phase diagram as a function of the strength of the Coulomb
potential due to the anions. Upon increasing the anion potential, we first find
a SDW phase corresponding to an interband pairing. This SDW phase is rapidly
supressed, the metallic phase being then stable down to zero temperature. The
SDW instability is restored when the anion potential becomes of the order of
the hopping amplitude. The metal-SDW transition corresponds to an intraband
pairing which leaves half of the Fermi surface metallic. At lower temperature,
a second transition, corresponding to the other intraband pairing, takes place
and opens a gap on the whole Fermi surface. We discuss the consequences of our
results for the experimental phase diagram of (TMTSF)_2ClO_4 at high magnetic
field.Comment: 13 pages, 10 figures, Version 2 with minor correction
Thermodynamic and thermoelectric properties of high-temperature cuprate superconductors in the stripe phase
We examine the thermodynamic and thermoelectric properties in the stripe
phase of high-Tc cuprates, by using the finite-temperature Lanczos technique
for the t-J model with a potential that stabilizes vertical charge stripes.
When the stripe potential is turned on, the entropy is suppressed as a
consequence of the formation of one-dimensional charge stripes accompanied by
an enhancement of antiferromagnetic spin correlation in the spin domains. The
stripe formation leads also to weak temperature dependence of the chemical
potential, leading to the suppression of the thermoelectric power. The
suppression of the entropy and thermoelectric power is consistent with
experimental data in the stripe phase of La_{1.6-x}Nd_{0.4}Sr_xCuO_4.Comment: REVTeX4, 4 pages, 4 figures, to appear in Phys.Rev.B Rapid Comm
Proximity to a Nearly Superconducting Quantum Critical Liquid
The coupling between superconductors and a quantum critical liquid that is
nearly superconducting provides natural interpretation for the Josephson effect
over unexpectedly long junctions, and the remarkable stripe-spacing dependence
of the critical temperature in LSCO and YBCO superconductors.Comment: four two-column pages, no figure
Statistical properties and statistical interaction for particles with spin: Hubbard model in one dimension and statistical spin liquid
We derive the statistical distribution functions for the Hubbard chain with
infinite Coulomb repulsion among particles and for the statistical spin liquid
with an arbitrary magnitude of the local interaction in momentum space.
Haldane's statistical interaction is derived from an exact solution for each of
the two models. In the case of the Hubbard chain the charge (holon) and the
spin (spinon) excitations decouple completely and are shown to behave
statistically as fermions and bosons, respectively. In both cases the
statistical interaction must contain several components, a rule for the
particles with the internal symmetry.Comment: (RevTex, 16 pages, improved version
Role of multiple subband renormalization in the electronic transport of correlated oxide superlattices
Metallic behavior of band-insulator/ Mott-insulator interfaces was observed
in artificial perovskite superlattices such as in nanoscale SrTiO3/LaTiO3
multilayers. Applying a semiclassical perspective to the parallel electronic
transport we identify two major ingredients relevant for such systems: i) the
quantum confinement of the conduction electrons (superlattice modulation) leads
to a complex, quasi-two dimensional subband structure with both hole- and
electron-like Fermi surfaces. ii) strong electron-electron interaction requires
a substantial renormalization of the quasi-particle dispersion. We characterize
this renormalization by two sets of parameters, namely, the quasi-particle
weight and the induced particle-hole asymmetry of each partially filled
subband. In our study, the quasi-particle dispersion is calculated
self-consistently as function of microscopic parameters using the slave-boson
mean-field approximation introduced by Kotliar and Ruckenstein. We discuss the
consequences of strong local correlations on the normal-state free-carrier
response in the optical conductivity and on the thermoelectric effects.Comment: 11 pages, 4 figure
- …