7 research outputs found
Coupling of Linearized Gravity to Nonrelativistic Test Particles: Dynamics in the General Laboratory Frame
The coupling of gravity to matter is explored in the linearized gravity
limit. The usual derivation of gravity-matter couplings within the
quantum-field-theoretic framework is reviewed. A number of inconsistencies
between this derivation of the couplings, and the known results of tidal
effects on test particles according to classical general relativity are pointed
out. As a step towards resolving these inconsistencies, a General Laboratory
Frame fixed on the worldline of an observer is constructed. In this frame, the
dynamics of nonrelativistic test particles in the linearized gravity limit is
studied, and their Hamiltonian dynamics is derived. It is shown that for
stationary metrics this Hamiltonian reduces to the usual Hamiltonian for
nonrelativistic particles undergoing geodesic motion. For nonstationary metrics
with long-wavelength gravitational waves (GWs) present, it reduces to the
Hamiltonian for a nonrelativistic particle undergoing geodesic
\textit{deviation} motion. Arbitrary-wavelength GWs couple to the test particle
through a vector-potential-like field , the net result of the tidal forces
that the GW induces in the system, namely, a local velocity field on the system
induced by tidal effects as seen by an observer in the general laboratory
frame. Effective electric and magnetic fields, which are related to the
electric and magnetic parts of the Weyl tensor, are constructed from that
obey equations of the same form as Maxwell's equations . A gedankin
gravitational Aharonov-Bohm-type experiment using to measure the
interference of quantum test particles is presented.Comment: 38 pages, 7 figures, written in ReVTeX. To appear in Physical Review
D. Galley proofs corrections adde