4 research outputs found

    Fermion family recurrences in the Dyson-Schwinger formalism

    Get PDF
    We study the multiple solutions of the truncated propagator Dyson-Schwinger equation for a simple fermion theory with Yukawa coupling to a scalar field. Upon increasing the coupling constant gg, other parameters being fixed, more than one non-perturbative solution breaking chiral symmetry becomes possible and we find these numerically. These ``recurrences'' appear as a mechanism to generate different fermion generations as quanta of the same fundamental field in an interacting field theory, without assuming any composite structure. The number of recurrences or flavors is reduced to a question about the value of the Yukawa coupling, and has no special profound significance in the Standard Model. The resulting mass function can have one or more nodes and the measurement that potentially detects them can be thought of as a collider-based test of the virtual dispersion relation E=p2+M(p2)2E=\sqrt{p^2+M(p^2)^2} for the charged lepton member of each family. This requires three independent measurements of the charged lepton's energy, three-momentum and off-shellness. We illustrate how this can be achieved for the (more difficult) case of the tau lepton

    QCD Corrections to QED Vacuum Polarization

    Full text link
    We compute QCD corrections to QED calculations for vacuum polarization in background magnetic fields. Formally, the diagram for virtual eeˉe\bar{e} loops is identical to the one for virtual qqˉq\bar{q} loops. However due to confinement, or to the growth of αs\alpha_s as p2p^2 decreases, a direct calculation of the diagram is not allowed. At large p2p^2 we consider the virtual qqˉq\bar{q} diagram, in the intermediate region we discuss the role of the contribution of quark condensates \left and at the low-energy limit we consider the π0\pi^0, as well as charged pion π+π\pi^+\pi^- loops. Although these effects seem to be out of the measurement accuracy of photon-photon laboratory experiments they may be relevant for γ\gamma-ray burst propagation. In particular, for emissions from the center of the galaxy (8.5 kpc), we show that the mixing between the neutral pseudo-scalar pion π0\pi_0 and photons renders a deviation from the power-law spectrum in the TeVTeV range. As for scalar quark condensates \left and virtual qqˉq\bar{q} loops are relevant only for very high radiation density 300MeV/fm3\sim 300 MeV/fm^3 and very strong magnetic fields of order 1014T\sim 10^{14} T.Comment: 15 pages, 4 figures; Final versio
    corecore